
Jenkins User Handbook
jenkinsci-docs@googlegroups.com

Table of Contents
User Handbook overview . 1

Installing Jenkins . 2

Prerequisites . 2

Installation platforms . 2

Post-installation setup wizard . 11

Using Jenkins . 14

Using credentials . 15

Credential security. 15

Configuring credentials . 15

Pipeline . 18

What is Jenkins Pipeline?. 18

Why Pipeline? . 19

Pipeline concepts . 20

Pipeline syntax overview. 20

Pipeline example . 22

Getting started with Pipeline . 25

Prerequisites . 25

Defining a Pipeline . 25

Built-in Documentation . 28

Further Reading . 30

Using a Jenkinsfile . 32

Creating a Jenkinsfile . 32

Working with your Jenkinsfile . 37

Running a Pipeline . 53

Restarting or Rerunning a Pipeline . 53

Branches and Pull Requests . 56

Creating a Multibranch Pipeline . 56

Using Organization Folders . 59

Using Docker with Pipeline . 60

Customizing the execution environment. 60

Advanced Usage with Scripted Pipeline . 64

Extending with Shared Libraries . 70

Defining Shared Libraries . 70

Using libraries. 72

Writing libraries. 76

Pipeline Development Tools . 83

Blue Ocean Editor . 83

Command-line Pipeline Linter . 83

"Replay" Pipeline Runs with Modifications . 85

IDE Integrations . 87

Pipeline Unit Testing Framework . 87

Pipeline Syntax . 89

Declarative Pipeline . 89

Scripted Pipeline . 120

Syntax Comparison . 121

Using Speed/Durability Settings To Reduce Disk I/O Needs . 122

How Do I Set Speed/Durability Settings? . 122

Will Higher-Performance Durability Settings Help Me? . 122

What Am I Giving Up With This Durability Setting "Trade-Off?". 123

Requirements To Use Durability Settings . 123

What Are The Durability Settings? . 124

Suggested Best Practices And Tips for Durability Settings. 124

Other Scaling Suggestions . 124

Blue Ocean . 126

What is Blue Ocean? . 126

Frequently asked questions . 126

Join the community. 128

Getting started with Blue Ocean. 129

Installing Blue Ocean . 129

Accessing Blue Ocean . 130

Navigation bar . 130

Switching to the classic UI . 131

Creating a Pipeline . 132

Setting up your Pipeline project. 132

Dashboard . 137

Navigation bar . 137

Pipelines list . 137

Favorites list . 138

Activity View . 140

Navigation Bar . 140

Activity . 140

Branches . 140

Pull Requests. 141

Pipeline Run Details View . 143

Pipeline Run Status . 143

Special cases . 144

Tabs . 144

Pipeline Editor . 148

Starting the editor . 148

Limitations . 148

Navigation bar . 149

Pipeline settings . 149

Stage editor . 149

Stage configuration . 150

Step configuration . 151

Save Pipeline dialog . 151

Managing Jenkins. 153

Configuring the System. 154

Managing Security . 155

Enabling Security. 155

Cross Site Request Forgery . 159

Agent/Master Access Control. 160

Managing Tools. 164

Built-in tool providers. 164

Managing Plugins. 165

Installing a plugin . 165

Updating a plugin . 168

Removing a plugin. 168

Pinned plugins . 171

Jenkins CLI . 173

Using the CLI over SSH . 173

Using the CLI client . 176

Script Console . 182

Managing Nodes . 183

In-process Script Approval. 184

Getting Started . 184

Groovy Sandbox. 185

Script Approval . 186

Managing Users . 188

System Administration . 189

Backing-up/Restoring Jenkins . 190

Monitoring Jenkins . 191

Securing Jenkins . 192

Access Control. 192

Protect users of Jenkins from other threats . 192

Disabling Security . 193

Managing Jenkins with Chef . 194

Managing Jenkins with Puppet . 195

Scaling Jenkins . 196

Appendix A: Appendix . 197

Glossary . 198

General Terms . 198

User Handbook overview
This page provides an overview of the documentation in the Jenkins User Handbook.

If you want to get up and running with Jenkins, see Installing Jenkins for procedures on how to
install Jenkins on your supported platform of choice.

If you are a typical Jenkins user (of any skill level) who wants to know more about Jenkins usage,
see Using Jenkins. Also refer to the separate Pipeline and Blue Ocean chapters for more information
about these core Jenkins features.

If you are a Jenkins administrator and want to know more about managing Jenkins nodes and
instances, see Managing Jenkins.

If you are a system administrator and want learn how to back-up, restore, maintain as Jenkins
servers and nodes, see Jenkins System Administration.

1

../installing
../using
../pipeline
../blueocean
../managing
../system-administration

Installing Jenkins
The procedures on this page are for new installations of Jenkins on a single/local machine.

Jenkins is typically run as a standalone application in its own process with the built-in Java servlet
container/application server (Jetty).

Jenkins can also be run as a servlet in different Java servlet containers such as Apache Tomcat or
GlassFish. However, instructions for setting up these types of installations are beyond the scope of
this page.

Note: Although this page focuses on local installations of Jenkins, this content can also be used to
help set up Jenkins in production environments.

Prerequisites
Minimum hardware requirements:

• 256 MB of RAM

• 1 GB of drive space (although 10 GB is a recommended minimum if running Jenkins as a Docker
container)

Recommended hardware configuration for a small team:

• 1 GB+ of RAM

• 50 GB+ of drive space

Software requirements:

• Java: see the Java Requirements page

• Web browser: see the Web Browser Compatibility page

Installation platforms
This section describes how to install/run Jenkins on different platforms and operating systems.

Docker

Docker is a platform for running applications in an isolated environment called a "container" (or
Docker container). Applications like Jenkins can be downloaded as read-only "images" (or Docker
images), each of which is run in Docker as a container. A Docker container is in effect a "running
instance" of a Docker image. From this perspective, an image is stored permanently more or less
(i.e. insofar as image updates are published), whereas containers are stored temporarily. Read more
about these concepts in the Docker documentation’s Getting Started, Part 1: Orientation and setup
page.

Docker’s fundamental platform and container design means that a single Docker image (for any
given application like Jenkins) can be run on any supported operating system (macOS, Linux and

2

https://stackoverflow.com/questions/7213541/what-is-java-servlet
http://www.eclipse.org/jetty/
http://tomcat.apache.org/
https://javaee.github.io/glassfish/
/doc/administration/requirements/java
/doc/administration/requirements/web-browsers
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/get-started/

Windows) or cloud service (AWS and Azure) which is also running Docker.

Installing Docker

To install Docker on your operating system, visit the Docker store website and click the Docker
Community Edition box which is suitable for your operating system or cloud service. Follow the
installation instructions on their website.

Jenkins can also run on Docker Enterprise Edition, which you can access through Docker EE on the
Docker store website.

CAUTION

If you are installing Docker on a Linux-based operating system, ensure you
configure Docker so it can be managed as a non-root user. Read more about this
in Docker’s Post-installation steps for Linux page of their documentation. This
page also contains information about how to configure Docker to start on boot.

Downloading and running Jenkins in Docker

There are several Docker images of Jenkins available.

The recommended Docker image to use is the jenkinsci/blueocean image (from the Docker Hub
repository). This image contains the current Long-Term Support (LTS) release of Jenkins (which is
production-ready) bundled with all Blue Ocean plugins and features. This means that you do not
need to install the Blue Ocean plugins separately.

NOTE

A new jenkinsci/blueocean image is published each time a new release of Blue
Ocean is published. You can see a list of previously published versions of the
jenkinsci/blueocean image on the tags page.

There are also other Jenkins Docker images you can use (accessible through
jenkins/jenkins on Docker Hub). However, these do not come with Blue Ocean,
which would need to be installed via the Manage Jenkins > Manage Plugins page
in Jenkins. Read more about this in Getting started with Blue Ocean.

On macOS and Linux

1. Open up a terminal window.

2. Download the jenkinsci/blueocean image and run it as a container in Docker using the following
docker run command:

3

https://store.docker.com/search?type=edition&offering=community
https://docs.docker.com/engine/installation/linux/linux-postinstall/
https://hub.docker.com/r/jenkinsci/blueocean/
https://hub.docker.com/r/jenkinsci/blueocean/
https://hub.docker.com/
https://hub.docker.com/
/download
https://hub.docker.com/r/jenkinsci/blueocean/tags/
https://hub.docker.com/r/jenkins/jenkins/
../managing
../managing/plugins
../blueocean/getting-started
https://docs.docker.com/engine/reference/commandline/run/

docker run \
 -u root \
 --rm \ ①
 -d \ ②
 -p 8080:8080 \ ③
 -p 50000:50000 \ ④
 -v jenkins-data:/var/jenkins_home \ ⑤
 -v /var/run/docker.sock:/var/run/docker.sock \ ⑥
 jenkinsci/blueocean ⑦

① (Optional) Automatically removes the Docker container (which is the instantiation of the
jenkinsci/blueocean image below) when it is shut down. This keeps things tidy if you need to
quit Jenkins.

② (Optional) Runs the jenkinsci/blueocean container in the background (i.e. "detached" mode)
and outputs the container ID. If you do not specify this option, then the running Docker log
for this container is output in the terminal window.

③ Maps (i.e. "publishes") port 8080 of the jenkinsci/blueocean container to port 8080 on the
host machine. The first number represents the port on the host while the last represents the
container’s port. Therefore, if you specified -p 49000:8080 for this option, you would be
accessing Jenkins on your host machine through port 49000.

④ (Optional) Maps port 50000 of the jenkinsci/blueocean container to port 50000 on the host
machine. This is only necessary if you have set up one or more JNLP-based Jenkins agents on
other machines, which in turn interact with the jenkinsci/blueocean container (acting as the
"master" Jenkins server, or simply "Jenkins master"). JNLP-based Jenkins agents
communicate with the Jenkins master through TCP port 50000 by default. You can change
this port number on your Jenkins master through the Configure Global Security page. If you
were to change your Jenkins master’s TCP port for JNLP agents value to 51000 (for
example), then you would need to re-run Jenkins (via this docker run … command) and
specify this "publish" option with something like -p 52000:51000, where the last value
matches this changed value on the Jenkins master and the first value is the port number on
the Jenkins master’s host machine through which the JNLP-based Jenkins agents
communicate (to the Jenkins master) - i.e. 52000.

⑤ (Optional but highly recommended) Maps the /var/jenkins_home directory in the container to
the Docker volume with the name jenkins-data. If this volume does not exist, then this docker
run command will automatically create the volume for you. This option is required if you
want your Jenkins state to persist each time you restart Jenkins (via this docker run …
command). If you do not specify this option, then Jenkins will effectively reset to a new
instance after each restart.
Notes: The jenkins-data volume could also be created independently using the docker volume
create command:
docker volume create jenkins-data

Instead of mapping the /var/jenkins_home directory to a Docker volume, you could also map
this directory to one on your machine’s local file system. For example, specifying the option
-v $HOME/jenkins:/var/jenkins_home would map the container’s /var/jenkins_home directory
to the jenkins subdirectory within the $HOME directory on your local machine, which would
typically be /Users/<your-username>/jenkins or /home/<your-username>/jenkins.

4

managing/security.pdf
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/reference/commandline/volume_create/
https://docs.docker.com/engine/reference/commandline/volume_create/

⑥ (Optional) /var/run/docker.sock represents the Unix-based socket through which the Docker
daemon listens on. This mapping allows the jenkinsci/blueocean container to communicate
with the Docker daemon, which is required if the jenkinsci/blueocean container needs to
instantiate other Docker containers. This option is necessary if you run declarative Pipelines
whose syntax contains the agent section with the docker parameter - i.e.
agent { docker { … } }. Read more about this on the Pipeline Syntax page.

⑦ The jenkinsci/blueocean Docker image itself. If this image has not already been downloaded,
then this docker run command will automtically download the image for you. Furthermore,
if any updates to this image were published since you last ran this command, then running
this command again will automatically download these published image updates for you.
Note: This Docker image could also be downloaded (or updated) independently using the
docker pull command:
docker pull jenkinsci/blueocean

Note: If copying and pasting the command snippet above does not work, try copying and
pasting this annotation-free version here:

docker run \
 -u root \
 --rm \
 -d \
 -p 8080:8080 \
 -p 50000:50000 \
 -v jenkins-data:/var/jenkins_home \
 -v /var/run/docker.sock:/var/run/docker.sock \
 jenkinsci/blueocean

3. Proceed to the Post-installation setup wizard.

On Windows

1. Open up a command prompt window.

2. Download the jenkinsci/blueocean image and run it as a container in Docker using the following
docker run command:

docker run ^
 -u root ^
 --rm ^
 -d ^
 -p 8080:8080 ^
 -p 50000:50000 ^
 -v jenkins-data:/var/jenkins_home ^
 -v /var/run/docker.sock:/var/run/docker.sock ^
 jenkinsci/blueocean

For an explanation of each of these options, refer to the macOS and Linux instructions above.

5

pipeline/syntax.pdf#agent
pipeline/syntax.pdf
https://docs.docker.com/engine/reference/commandline/pull/
https://docs.docker.com/engine/reference/commandline/run/

3. Proceed to the Post-installation setup wizard.

Accessing the Jenkins/Blue Ocean Docker container

If you have some experience with Docker and you wish or need to access the jenkinsci/blueocean
container through a terminal/command prompt using the docker exec command, you can add an
option like --name jenkins-blueocean (with the docker run above), which would give the
jenkinsci/blueocean container the name "jenkins-blueocean".

This means you could access the container (through a separate terminal/command prompt
window) with a docker exec command like:

docker exec -it jenkins-blueocean bash

Accessing the Jenkins console log through Docker logs

There is a possibility you may need to access the Jenkins console log, for instance, when Unlocking
Jenkins as part of the Post-installation setup wizard.

If you did not specify the detached mode option -d with the docker run … command above, then the
Jenkins console log is easily accessible through the terminal/command prompt window from which
you ran this Docker command.

Otherwise, you can access the Jenkins console log through the Docker logs of the
jenkinsci/blueocean container using the following command:

docker logs <docker-container-name>

Your <docker-container-name> can be obtained using the docker ps command. If you specified the
--name jenkins-blueocean option in the docker run … command above (see also Accessing the
Jenkins/Blue Ocean Docker container), you can simply use the docker logs command:

docker logs jenkins-blueocean

Accessing the Jenkins home directory

There is a possibility you may need to access the Jenkins home directory, for instance, to check the
details of a Jenkins build in the workspace subdirectory.

If you mapped the Jenkins home directory (/var/jenkins_home) to one on your machine’s local file
system (i.e. in the docker run … command above), then you can access the contents of this directory
through your machine’s usual terminal/command prompt.

Otherwise, if you specified the -v jenkins-data:/var/jenkins_home option in the docker run …
command, you can access the contents of the Jenkins home directory through the
jenkinsci/blueocean container’s terminal/command prompt using the docker exec command:

docker exec -it <docker-container-name> bash

As mentioned above, your <docker-container-name> can be obtained using the docker ps command.
If you specified the
--name jenkins-blueocean option in the docker run … command above (see also Accessing the

6

https://docs.docker.com/engine/reference/commandline/exec/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/logs/
https://docs.docker.com/engine/reference/commandline/ps/
https://docs.docker.com/engine/reference/commandline/exec/
https://docs.docker.com/engine/reference/commandline/ps/

Jenkins/Blue Ocean Docker container), you can simply use the docker exec command:

docker exec -it jenkins-blueocean bash

WAR file

The Web application ARchive (WAR) file version of Jenkins can be installed on any operating
system or platform that supports Java.

To download and run the WAR file version of Jenkins:

1. Download the latest stable Jenkins WAR file to an appropriate directory on your machine.

2. Open up a terminal/command prompt window to the download directory.

3. Run the command java -jar jenkins.war.

4. Browse to http://localhost:8080 and wait until the Unlock Jenkins page appears.

5. Continue on with the Post-installation setup wizard below.

Notes:

• Unlike downloading and running Jenkins with Blue Ocean in Docker (above), this process does
not automatically install the Blue Ocean features, which would need to installed separately via
the Manage Jenkins > Manage Plugins page in Jenkins. Read more about the specifics for
installing Blue Ocean on the Getting started with Blue Ocean page.

• You can change the port by specifying the --httpPort option when you run the java -jar

jenkins.war command. For example, to make Jenkins accessible through port 9090, then run
Jenkins using the command:
java -jar jenkins.war --httpPort=9090

macOS

To install from the website, using a package:

• Download the latest package

• Open the package and follow the instructions

Jenkins can also be installed using brew:

• Install the latest release version

brew install jenkins

• Install the LTS version

brew install jenkins-lts

7

http://mirrors.jenkins.io/war-stable/latest/jenkins.war
../../book/managing
../../book/managing/plugins/
../../book/blueocean/getting-started/
http://mirrors.jenkins.io/osx/latest

Linux

Debian/Ubuntu

On Debian-based distributions, such as Ubuntu, you can install Jenkins through apt.

Recent versions are available in an apt repository. Older but stable LTS versions are in this apt
repository.

wget -q -O - https://pkg.jenkins.io/debian/jenkins.io.key | sudo apt-key add -
sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ >
/etc/apt/sources.list.d/jenkins.list'
sudo apt-get update
sudo apt-get install jenkins

This package installation will:

• Setup Jenkins as a daemon launched on start. See /etc/init.d/jenkins for more details.

• Create a ‘jenkins’ user to run this service.

• Direct console log output to the file /var/log/jenkins/jenkins.log. Check this file if you are
troubleshooting Jenkins.

• Populate /etc/default/jenkins with configuration parameters for the launch, e.g JENKINS_HOME

• Set Jenkins to listen on port 8080. Access this port with your browser to start configuration.

NOTE
If your /etc/init.d/jenkins file fails to start Jenkins, edit the /etc/default/jenkins to
replace the line ----HTTP_PORT=8080---- with ----HTTP_PORT=8081---- Here, "8081"
was chosen but you can put another port available.

Fedora

You can install Jenkins through dnf. You need to add the Jenkins repository from the Jenkins
website to the package manager first.

sudo wget -O /etc/yum.repos.d/jenkins.repo http://pkg.jenkins-
ci.org/redhat/jenkins.repo
sudo rpm --import https://jenkins-ci.org/redhat/jenkins-ci.org.key

Then, you can install Jenkins. The following command also ensures you have java installed.

sudo dnf upgrade && sudo dnf install jenkins java

Next, start the Jenkins service.

8

https://pkg.jenkins.io/debian/
https://pkg.jenkins.io/debian-stable/
https://pkg.jenkins.io/debian-stable/

sudo service jenkins start
sudo chkconfig jenkins on

You can check the status of the Jenkins service using this systemctl command:

systemctl status jenkins

If everything has been set up correctly, you should see an output like this:

Loaded: loaded (/etc/rc.d/init.d/jenkins; generated)
Active: active (running) since Tue 2018-11-13 16:19:01 +03; 4min 57s ago
...

NOTE

If you have a firewall installed, you must add Jenkins as an exception. You must
change YOURPORT in the script below to the port you want to use. Port 8080 is the most
common.

firewall-cmd --permanent --new-service=jenkins
firewall-cmd --permanent --service=jenkins --set-short="Jenkins Service
Ports"
firewall-cmd --permanent --service=jenkins --set-description="Jenkins
service firewalld port exceptions"
firewall-cmd --permanent --service=jenkins --add-port=YOURPORT/tcp
firewall-cmd --permanent --add-service=jenkins
firewall-cmd --zone=public --add-service=http --permanent
firewall-cmd --reload

Windows

To install from the website, using the installer:

• Download the latest package

• Open the package and follow the instructions

Other operating systems

OpenIndiana Hipster

On a system running OpenIndiana Hipster Jenkins can be installed in either the local or global zone
using the Image Packaging System (IPS).

9

http://mirrors.jenkins.io/windows/latest
http://www.openindiana.org/
https://en.wikipedia.org/wiki/Image_Packaging_System

IMPORTANT

Disclaimer: This platform is NOT officially supported by the Jenkins team,
use it at your own risk. Packaging and integration described in this section is
maintained by the OpenIndiana Hipster team, bundling the generic
jenkins.war to work in that operating environment.

For the common case of running the newest packaged weekly build as a standalone (Jetty) server,
simply execute:

pkg install jenkins
svcadm enable jenkins

The common packaging integration for a standalone service will:

• Create a jenkins user to run the service and to own the directory structures under
/var/lib/jenkins.

• Pull the OpenJDK8 and other packages required to execute Jenkins, including the jenkins-core-
weekly package with the latest jenkins.war.

CAUTION
Long-Term Support (LTS) Jenkins releases currently do not support
OpenZFS-based systems, so no packaging is provided at this time.

• Set up Jenkins as an SMF service instance (svc:/network/http:jenkins) which can then be
enabled with the svcadm command demonstrated above.

• Set up Jenkins to listen on port 8080.

• Configure the log output to be managed by SMF at /var/svc/log/network-http:jenkins.log.

Once Jenkins is running, consult the log (/var/svc/log/network-http:jenkins.log) to retrieve the
generated administrator password for the initial set up of Jenkins, usually it will be found at
/var/lib/jenkins/home/secrets/initialAdminPassword. Then navigate to localhost:8080 to complete
configuration of the Jenkins instance.

To change attributes of the service, such as environment variables like JENKINS_HOME or the port
number used for the Jetty web server, use the svccfg utility:

svccfg -s svc:/network/http:jenkins editprop
svcadm refresh svc:/network/http:jenkins

You can also refer to /lib/svc/manifest/network/jenkins-standalone.xml for more details and
comments about currently supported tunables of the SMF service. Note that the jenkins user
account created by the packaging is specially privileged to allow binding to port numbers under
1024.

The current status of Jenkins-related packages available for the given release of OpenIndiana can
be queried with:

10

http://localhost:8080

pkg info -r '*jenkins*'

Upgrades to the package can be performed by updating the entire operating environment with pkg
update, or specifically for Jenkins core software with:

pkg update jenkins-core-weekly

CAUTION
Procedure for updating the package will restart the currently running Jenkins
process. Make sure to prepare it for shutdown and finish all running jobs
before updating, if needed.

Solaris, OmniOS, SmartOS, and other siblings

Generally it should suffice to install Java 8 and download the jenkins.war and run it as a standalone
process or under an application server such as Apache Tomcat.

Some caveats apply:

• Headless JVM and fonts: For OpenJDK builds on minimalized-footprint systems, there may be
issues running the headless JVM, because Jenkins needs some fonts to render certain pages.

• ZFS-related JVM crashes: When Jenkins runs on a system detected as a SunOS, it tries to load
integration for advanced ZFS features using the bundled libzfs.jar which maps calls from Java
to native libzfs.so routines provided by the host OS. Unfortunately, that library was made for
binary utilities built and bundled by the OS along with it at the same time, and was never
intended as a stable interface exposed to consumers. As the forks of Solaris legacy, including
ZFS and later the OpenZFS initiative evolved, many different binary function signatures were
provided by different host operating systems - and when Jenkins libzfs.jar invoked the wrong
signature, the whole JVM process crashed. A solution was proposed and integrated in
jenkins.war since weekly release 2.55 (and not yet in any LTS to date) which enables the
administrator to configure which function signatures should be used for each function known
to have different variants, apply it to their application server initialization options and then run
and update the generic jenkins.war without further workarounds. See the libzfs4j Git repository
for more details, including a script to try and "lock-pick" the configuration needed for your
particular distribution (in particular if your kernel updates bring a new incompatible
libzfs.so).

Also note that forks of the OpenZFS initiative may provide ZFS on various BSD, Linux, and macOS
distributions. Once Jenkins supports detecting ZFS capabilities, rather than relying on the SunOS
check, the above caveats for ZFS integration with Jenkins should be considered.

Post-installation setup wizard
After downloading, installing and running Jenkins using one of the procedures above, the post-
installation setup wizard begins.

This setup wizard takes you through are a few quick "one-off" steps to unlock Jenkins, customize it

11

/download
http://tomcat.apache.org
https://wiki.jenkins.io/display/JENKINS/Jenkins+got+java.awt.headless+problem
https://github.com/kohsuke/libzfs4j

with plugins and create the first administrator user through which you can continue accessing
Jenkins.

Unlocking Jenkins

When you first access a new Jenkins instance, you are asked to unlock it using an automatically-
generated password.

1. Browse to http://localhost:8080 (or whichever port you configured for Jenkins when installing
it) and wait until the Unlock Jenkins page appears.

2. From the Jenkins console log output, copy the automatically-generated alphanumeric password
(between the 2 sets of asterisks).

3. On the Unlock Jenkins page, paste this password into the Administrator password field and
click Continue.
Notes:

◦ If you ran Jenkins in Docker in detached mode, you can access the Jenkins console log from
the Docker logs (above).

◦ The Jenkins console log indicates the location (in the Jenkins home directory) where this
password can also be obtained. This password must be entered in the setup wizard on new
Jenkins installations before you can access Jenkins’s main UI. This password also serves as
the default admininstrator account’s password (with username "admin") if you happen to
skip the subsequent user-creation step in the setup wizard.

Customizing Jenkins with plugins

After unlocking Jenkins, the Customize Jenkins page appears. Here you can install any number of
useful plugins as part of your initial setup.

Click one of the two options shown:

• Install suggested plugins - to install the recommended set of plugins, which are based on most
common use cases.

• Select plugins to install - to choose which set of plugins to initially install. When you first
access the plugin selection page, the suggested plugins are selected by default.

NOTE
If you are not sure what plugins you need, choose Install suggested plugins. You
can install (or remove) additional Jenkins plugins at a later point in time via the
Manage Jenkins > Manage Plugins page in Jenkins.

12

../../book/managing
../../book/managing/plugins/

The setup wizard shows the progression of Jenkins being configured and your chosen set of Jenkins
plugins being installed. This process may take a few minutes.

Creating the first administrator user

Finally, after customizing Jenkins with plugins, Jenkins asks you to create your first administrator
user.

1. When the Create First Admin User page appears, specify the details for your administrator
user in the respective fields and click Save and Finish.

2. When the Jenkins is ready page appears, click Start using Jenkins.
Notes:

◦ This page may indicate Jenkins is almost ready! instead and if so, click Restart.

◦ If the page does not automatically refresh after a minute, use your web browser to refresh
the page manually.

3. If required, log in to Jenkins with the credentials of the user you just created and you are ready
to start using Jenkins!

IMPORTANT
From this point on, the Jenkins UI is only accessible by providing valid
username and password credentials.

13

Using Jenkins
This chapter contains topics for typical Jenkins users (of all skill levels) about Jenkins usage which
is outside the scope of the core Jenkins features: Pipeline and Blue Ocean.

If you want to create and configure a Pipeline project through a Jenkinsfile or through Blue Ocean,
or you wish to find out more about these core Jenkins features, refer to the relevant topics within
the respective Pipeline and Blue Ocean chapters.

If you are a Jenkins administrator and want to know more about managing Jenkins nodes and
instances, see Managing Jenkins.

If you are a system administrator and want learn how to back-up, restore, maintain as Jenkins
servers and nodes, see Jenkins System Administration.

For an overview of content in the Jenkins User Handbook, see User Handbook overview.

14

../pipeline
../blueocean
../managing
../system-administration
../getting-started

Using credentials
There are numerous 3rd-party sites and applications that can interact with Jenkins, for example,
artifact repositories, cloud-based storage systems and services, and so on.

A systems administrator of such an application can configure credentials in the application for
dedicated use by Jenkins. This would typically be done to "lock down" areas of the application’s
functionality available to Jenkins, usually by applying access controls to these credentials. Once a
Jenkins manager (i.e. a Jenkins user who administers a Jenkins site) adds/configures these
credentials in Jenkins, the credentials can be used by Pipeline projects to interact with these 3rd
party applications.

Note: The Jenkins credentials functionality described on this and related pages is provided by the
plugin:credentials-binding[Credentials Binding plugin].

Credentials stored in Jenkins can be used:

• anywhere applicable throughout Jenkins (i.e. global credentials),

• by a specific Pipeline project/item (read more about this in the Handling credentials section of
Using a Jenkinsfile),

• by a specific Jenkins user (as is the case for Pipeline projects created in Blue Ocean).

Jenkins can store the following types of credentials:

• Secret text - a token such as an API token (e.g. a GitHub personal access token),

• Username and password - which could be handled as separate components or as a colon
separated string in the format username:password (read more about this in Handling credentials),

• Secret file - which is essentially secret content in a file,

• SSH Username with private key - an SSH public/private key pair,

• Certificate - a PKCS#12 certificate file and optional password, or

• Docker Host Certificate Authentication credentials.

Credential security
To maximize security, credentials configured in Jenkins are stored in an encrypted form on the
master Jenkins instance (encrypted by the Jenkins instance ID) and are only handled in Pipeline
projects via their credential IDs.

This minimizes the chances of exposing the actual credentials themselves to Jenkins users and
hinders the ability to copy functional credentials from one Jenkins instance to another.

Configuring credentials
This section describes procedures for configuring credentials in Jenkins.

Credentials can be added to Jenkins by any Jenkins user who has the Credentials > Create

15

../../pipeline/jenkinsfile#handling-credentials
../../pipeline/jenkinsfile
../../blueocean/creating-pipelines
../../pipeline/jenkinsfile#handling-credentials
http://www.snailbook.com/protocols.html
https://tools.ietf.org/html/rfc7292

permission (set through Matrix-based security). These permissions can be configured by a Jenkins
user with the Administer permission. Read more about this in the Authorization section of
Managing Security.

Otherwise, any Jenkins user can add and configure credentials if the Authorization settings of your
Jenkins instance’s Configure Global Security settings page is set to the default Logged-in users
can do anything setting or Anyone can do anything setting.

Adding new global credentials

To add new global credentials to your Jenkins instance:

1. If required, ensure you are logged in to Jenkins (as a user with the Credentials > Create
permission).

2. From the Jenkins home page (i.e. the Dashboard of the Jenkins classic UI), click Credentials >
System on the left.

3. Under System, click the Global credentials (unrestricted) link to access this default domain.

4. Click Add Credentials on the left.
Note: If there are no credentials in this default domain, you could also click the add some
credentials link (which is the same as clicking the Add Credentials link).

5. From the Kind field, choose the type of credentials to add.

6. From the Scope field, choose either:

◦ Global - if the credential/s to be added is/are for a Pipeline project/item. Choosing this option
applies the scope of the crendential/s to the Pipeline project/item "object" and all its
descendent objects.

◦ System - if the credential/s to be added is/are for the Jenkins instance itself to interact with
system administration functions, such as email authentication, agent connection, etc.
Choosing this option applies the scope of the crendential/s to a single object only.

7. Add the credentials themselves into the appropriate fields for your chosen credential type:

◦ Secret text - copy the secret text and paste it into the Secret field.

◦ Username and password - specify the credential’s Username and Password in their
respective fields.

◦ Secret file - click the Choose file button next to the File field to select the secret file to
upload to Jenkins.

◦ SSH Username with private key - specify the credentials Username, Private Key and
optional Passphrase into their respective fields.
Note: Choosing Enter directly allows you to copy the private key’s text and paste it into the
resulting Key text box.

◦ Certificate - specify the Certificate and optional Password. Choosing Upload PKCS#12
certificate allows you to upload the certificate as a file via the resulting Upload certificate
button.

◦ Docker Host Certificate Authentication - copy and paste the appropriate details into the
Client Key, Client Certificate and Server CA Certificate fields.

16

../../managing/security/#authorization
../../managing/security
#types-of-credentials

8. In the ID field, specify a meaningful credential ID value - for example, jenkins-user-for-xyz-
artifact-repository. You can use upper- or lower-case letters for the credential ID, as well as
any valid separator character. However, for the benefit of all users on your Jenkins instance, it
is best to use a single and consistent convention for specifying credential IDs.
Note: This field is optional. If you do not specify its value, Jenkins assigns a globally unique ID
(GUID) value for the credential ID. Bear in mind that once a credential ID is set, it can no longer
be changed.

9. Specify an optional Description for the credential/s.

10. Click OK to save the credentials.

17

Pipeline
This chapter covers all recommended aspects of Jenkins Pipeline functionality, including how to:

• get started with Pipeline - covers how to define a Jenkins Pipeline (i.e. your Pipeline) through
Blue Ocean, through the classic UI or in SCM,

• create and use a Jenkinsfile - covers use-case scenarios on how to craft and construct your
Jenkinsfile,

• work with branches and pull requests,

• use Docker with Pipeline - covers how Jenkins can invoke Docker containers on agents/nodes
(from a Jenkinsfile) to build your Pipeline projects,

• extend Pipeline with shared libraries,

• use different development tools to facilitate the creation of your Pipeline, and

• work with Pipeline syntax - this page is a comprehensive reference of all Declarative Pipeline
syntax.

For an overview of content in the Jenkins User Handbook, see User Handbook overview.

What is Jenkins Pipeline?
Jenkins Pipeline (or simply "Pipeline" with a capital "P") is a suite of plugins which supports
implementing and integrating continuous delivery pipelines into Jenkins.

A continuous delivery (CD) pipeline is an automated expression of your process for getting software
from version control right through to your users and customers. Every change to your software
(committed in source control) goes through a complex process on its way to being released. This
process involves building the software in a reliable and repeatable manner, as well as progressing
the built software (called a "build") through multiple stages of testing and deployment.

Pipeline provides an extensible set of tools for modeling simple-to-complex delivery pipelines "as
code" via the Pipeline domain-specific language (DSL) syntax. [1: Domain-specific language]

The definition of a Jenkins Pipeline is written into a text file (called a Jenkinsfile) which in turn can
be committed to a project’s source control repository. [2: Source control management] This is the
foundation of "Pipeline-as-code"; treating the CD pipeline a part of the application to be versioned
and reviewed like any other code.

Creating a Jenkinsfile and committing it to source control provides a number of immediate
benefits:

• Automatically creates a Pipeline build process for all branches and pull requests.

• Code review/iteration on the Pipeline (along with the remaining source code).

• Audit trail for the Pipeline.

• Single source of truth [3: Single source of truth] for the Pipeline, which can be viewed and
edited by multiple members of the project.

18

getting-started
getting-started#defining-a-pipeline
getting-started#through-blue-ocean
getting-started#through-the-classic-ui
getting-started#defining-a-pipeline-in-scm
jenkinsfile
jenkinsfile
multibranch
docker
shared-libraries
development
syntax
getting-started
syntax
https://en.wikipedia.org/wiki/Domain-specific_language
jenkinsfile
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Single_source_of_truth

While the syntax for defining a Pipeline, either in the web UI or with a Jenkinsfile is the same, it is
generally considered best practice to define the Pipeline in a Jenkinsfile and check that in to source
control.

Declarative versus Scripted Pipeline syntax

A Jenkinsfile can be written using two types of syntax - Declarative and Scripted.

Declarative and Scripted Pipelines are constructed fundamentally differently. Declarative Pipeline
is a more recent feature of Jenkins Pipeline which:

• provides richer syntactical features over Scripted Pipeline syntax, and

• is designed to make writing and reading Pipeline code easier.

Many of the individual syntactical components (or "steps") written into a Jenkinsfile, however, are
common to both Declarative and Scripted Pipeline. Read more about how these two types of syntax
differ in [pipeline-concepts] and [pipeline-syntax-overview] below.

Why Pipeline?
Jenkins is, fundamentally, an automation engine which supports a number of automation patterns.
Pipeline adds a powerful set of automation tools onto Jenkins, supporting use cases that span from
simple continuous integration to comprehensive CD pipelines. By modeling a series of related tasks,
users can take advantage of the many features of Pipeline:

• Code: Pipelines are implemented in code and typically checked into source control, giving
teams the ability to edit, review, and iterate upon their delivery pipeline.

• Durable: Pipelines can survive both planned and unplanned restarts of the Jenkins master.

• Pausable: Pipelines can optionally stop and wait for human input or approval before
continuing the Pipeline run.

• Versatile: Pipelines support complex real-world CD requirements, including the ability to
fork/join, loop, and perform work in parallel.

• Extensible: The Pipeline plugin supports custom extensions to its DSL [1: Domain-specific
language] and multiple options for integration with other plugins.

While Jenkins has always allowed rudimentary forms of chaining Freestyle Jobs together to
perform sequential tasks, [4: Additional plugins have been used to implement complex behaviors
utilizing Freestyle Jobs such as the Copy Artifact, Parameterized Trigger, and Promoted Builds
plugins] Pipeline makes this concept a first-class citizen in Jenkins.

Building on the core Jenkins value of extensibility, Pipeline is also extensible both by users with
Pipeline Shared Libraries and by plugin developers. [5: plugin:github-organization-folder[GitHub
Organization Folder plugin]]

The flowchart below is an example of one CD scenario easily modeled in Jenkins Pipeline:

19

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
shared-libraries

Pipeline concepts
The following concepts are key aspects of Jenkins Pipeline, which tie in closely to Pipeline syntax
(see the overview below).

Pipeline

A Pipeline is a user-defined model of a CD pipeline. A Pipeline’s code defines your entire build
process, which typically includes stages for building an application, testing it and then delivering it.

Also, a pipeline block is a key part of Declarative Pipeline syntax.

Node

A node is a machine which is part of the Jenkins environment and is capable of executing a
Pipeline.

Also, a node block is a key part of Scripted Pipeline syntax.

Stage

A stage block defines a conceptually distinct subset of tasks performed through the entire Pipeline
(e.g. "Build", "Test" and "Deploy" stages), which is used by many plugins to visualize or present
Jenkins Pipeline status/progress. [6: Blue Ocean, plugin:pipeline-stage-view[Pipeline: Stage View
plugin]]

Step

A single task. Fundamentally, a step tells Jenkins what to do at a particular point in time (or "step"
in the process). For example, to execute the shell command make use the sh step: sh 'make'. When a
plugin extends the Pipeline DSL, [1: Domain-specific language] that typically means the plugin has
implemented a new step.

Pipeline syntax overview
The following Pipeline code skeletons illustrate the fundamental differences between Declarative
Pipeline syntax and Scripted Pipeline syntax.

Be aware that both stages and steps (above) are common elements of both Declarative and Scripted
Pipeline syntax.

Declarative Pipeline fundamentals

In Declarative Pipeline syntax, the pipeline block defines all the work done throughout your entire
Pipeline.

20

#pipeline-syntax-overview
#declarative-pipeline-fundamentals
#scripted-pipeline-fundamentals
../blueocean
https://en.wikipedia.org/wiki/Domain-specific_language
#declarative-pipeline-fundamentals
#declarative-pipeline-fundamentals
#scripted-pipeline-fundamentals
#stage
#step

// Declarative //
pipeline {
 agent any ①
 stages {
 stage('Build') { ②
 steps {
 // ③
 }
 }
 stage('Test') { ④
 steps {
 // ⑤
 }
 }
 stage('Deploy') { ⑥
 steps {
 // ⑦
 }
 }
 }
}
// Script //

① Execute this Pipeline or any of its stages, on any available agent.

② Defines the "Build" stage.

③ Perform some steps related to the "Build" stage.

④ Defines the "Test" stage.

⑤ Perform some steps related to the "Test" stage.

⑥ Defines the "Deploy" stage.

⑦ Perform some steps related to the "Deploy" stage.

Scripted Pipeline fundamentals

In Scripted Pipeline syntax, one or more node blocks do the core work throughout the entire
Pipeline. Although this is not a mandatory requirement of Scripted Pipeline syntax, confining your
Pipeline’s work inside of a node block does two things:

1. Schedules the steps contained within the block to run by adding an item to the Jenkins queue.
As soon as an executor is free on a node, the steps will run.

2. Creates a workspace (a directory specific to that particular Pipeline) where work can be done
on files checked out from source control.
Caution: Depending on your Jenkins configuration, some workspaces may not get automatically
cleaned up after a period of inactivity. See tickets and discussion linked from JENKINS-2111 for
more information.

21

https://issues.jenkins-ci.org/browse/JENKINS-2111

// Declarative //
// Script //
node { ①
 stage('Build') { ②
 // ③
 }
 stage('Test') { ④
 // ⑤
 }
 stage('Deploy') { ⑥
 // ⑦
 }
}

① Execute this Pipeline or any of its stages, on any available agent.

② Defines the "Build" stage. stage blocks are optional in Scripted Pipeline syntax. However,
implementing stage blocks in a Scripted Pipeline provides clearer visualization of each `stage’s
subset of tasks/steps in the Jenkins UI.

③ Perform some steps related to the "Build" stage.

④ Defines the "Test" stage.

⑤ Perform some steps related to the "Test" stage.

⑥ Defines the "Deploy" stage.

⑦ Perform some steps related to the "Deploy" stage.

Pipeline example
Here is an example of a Jenkinsfile using Declarative Pipeline syntax - its Scripted syntax
equivalent can be accessed by clicking the Toggle Scripted Pipeline link below:

22

// Declarative //
pipeline { ①
 agent any ②
 stages {
 stage('Build') { ③
 steps { ④
 sh 'make' ⑤
 }
 }
 stage('Test'){
 steps {
 sh 'make check'
 junit 'reports/**/*.xml' ⑥
 }
 }
 stage('Deploy') {
 steps {
 sh 'make publish'
 }
 }
 }
}
// Script //
node { ⑦
 stage('Build') { ③
 sh 'make' ⑤
 }
 stage('Test') {
 sh 'make check'
 junit 'reports/**/*.xml' ⑥
 }
 stage('Deploy') {
 sh 'make publish'
 }
}

① pipeline is Declarative Pipeline-specific syntax that defines a "block" containing all content and
instructions for executing the entire Pipeline.

② agent is Declarative Pipeline-specific syntax that instructs Jenkins to allocate an executor (on a
node) and workspace for the entire Pipeline.

③ stage is a syntax block that describes a stage of this Pipeline. Read more about stage blocks in
Declarative Pipeline syntax on the Pipeline syntax page. As mentioned above, stage blocks are
optional in Scripted Pipeline syntax.

④ steps is Declarative Pipeline-specific syntax that describes the steps to be run in this stage.

⑤ sh is a Pipeline step (provided by the plugin:workflow-durable-task-step[Pipeline: Nodes and
Processes plugin]) that executes the given shell command.

⑥ junit is another a Pipeline step (provided by the plugin:junit[JUnit plugin]) for aggregating test

23

syntax#declarative-pipeline
syntax#agent
#stage
syntax#stage
#scripted-pipeline-fundamentals
syntax#steps
syntax#steps
syntax#steps

reports.

⑦ node is Scripted Pipeline-specific syntax that instructs Jenkins to execute this Pipeline (and any
stages contained within it), on any available agent/node. This is effectively equivalent to agent in
Declarative Pipeline-specific syntax.

Read more about Pipeline syntax on the Pipeline Syntax page.

24

syntax

Getting started with Pipeline
As mentioned previously, Jenkins Pipeline is a suite of plugins that supports implementing and
integrating continuous delivery pipelines into Jenkins. Pipeline provides an extensible set of tools
for modeling simple-to-complex delivery pipelines "as code" via the Pipeline DSL. [7: Domain-
specific language]

This section describes how to get started with creating your Pipeline project in Jenkins and
introduces you to the various ways that a Jenkinsfile can be created and stored.

Prerequisites
To use Jenkins Pipeline, you will need:

• Jenkins 2.x or later (older versions back to 1.642.3 may work but are not recommended)

• Pipeline plugin, [8: Pipeline plugin] which is installed as part of the "suggested plugins"
(specified when running through the Post-installation setup wizard after installing Jenkins).

Read more about how to install and manage plugins in Managing Plugins.

Defining a Pipeline
Both Declarative and Scripted Pipeline are DSLs [1: Domain-specific language] to describe portions
of your software delivery pipeline. Scripted Pipeline is written in a limited form of Groovy syntax.

Relevant components of Groovy syntax will be introduced as required throughout this
documentation, so while an understanding of Groovy is helpful, it is not required to work with
Pipeline.

A Pipeline can be created in one of the following ways:

• [through-blue-ocean] - after setting up a Pipeline project in Blue Ocean, the Blue Ocean UI helps
you write your Pipeline’s Jenkinsfile and commit it to source control.

• [through-the-classic-ui] - you can enter a basic Pipeline directly in Jenkins through the classic
UI.

• In SCM - you can write a Jenkinsfile manually, which you can commit to your project’s source
control repository. [9: Source control management]

The syntax for defining a Pipeline with either approach is the same, but while Jenkins supports
entering Pipeline directly into the classic UI, it is generally considered best practice to define the
Pipeline in a Jenkinsfile which Jenkins will then load directly from source control.

Through Blue Ocean

If you are new to Jenkins Pipeline, the Blue Ocean UI helps you set up your Pipeline project, and
automatically creates and writes your Pipeline (i.e. the Jenkinsfile) for you through the graphical
Pipeline editor.

25

../
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://plugins.jenkins.io/workflow-aggregator
../../installing#setup-wizard
../../installing
../../managing/plugins
../#declarative-versus-scripted-pipeline-syntax
https://en.wikipedia.org/wiki/Domain-specific_language
http://groovy-lang.org/semantics.html
#defining-a-pipeline-in-scm
https://en.wikipedia.org/wiki/Version_control
../../blueocean/creating-pipelines

As part of setting up your Pipeline project in Blue Ocean, Jenkins configures a secure and
appropriately authenticated connection to your project’s source control repository. Therefore, any
changes you make to the Jenkinsfile via Blue Ocean’s Pipeline editor are automatically saved and
committed to source control.

Read more about Blue Ocean in the Blue Ocean chapter and Getting started with Blue Ocean page.

Through the classic UI

A Jenkinsfile created using the classic UI is stored by Jenkins itself (within the Jenkins home
directory).

To create a basic Pipeline through the Jenkins classic UI:

1. If required, ensure you are logged in to Jenkins.

2. From the Jenkins home page (i.e. the Dashboard of the Jenkins classic UI), click New Item at the
top left.

3. In the Enter an item name field, specify the name for your new Pipeline project.
Caution: Jenkins uses this item name to create directories on disk. It is recommended to avoid
using spaces in item names, since doing so may uncover bugs in scripts that do not properly
handle spaces in directory paths.

4. Scroll down and click Pipeline, then click OK at the end of the page to open the Pipeline
configuration page (whose General tab is selected).

5. Click the Pipeline tab at the top of the page to scroll down to the Pipeline section.
Note: If instead you are defining your Jenkinsfile in source control, follow the instructions in
In SCM below.

6. In the Pipeline section, ensure that the Definition field indicates the Pipeline script option.

7. Enter your Pipeline code into the Script text area.
For instance, copy the following Declarative example Pipeline code (below the Jenkinsfile (…)
heading) or its Scripted version equivalent and paste this into the Script text area. (The
Declarative example below is used throughout the remainder of this procedure.)

26

../../blueocean
../../blueocean/getting-started
#defining-a-pipeline-in-scm

// Declarative //
pipeline {
 agent any ①
 stages {
 stage('Stage 1') {
 steps {
 echo 'Hello world!' ②
 }
 }
 }
}
// Script //
node { ③
 stage('Stage 1') {
 echo 'Hello World' ②
 }
}

① agent instructs Jenkins to allocate an executor (on any available agent/node in the Jenkins
environment) and workspace for the entire Pipeline.

② echo writes simple string in the console output.

③ node effectively does the same as agent (above).

Note: You can also select from canned Scripted Pipeline examples from the try sample Pipeline
option at the top right of the Script text area. Be aware that there are no canned Declarative
Pipeline examples available from this field.

8. Click Save to open the Pipeline project/item view page.

9. On this page, click Build Now on the left to run the Pipeline.

10. Under Build History on the left, click #1 to access the details for this particular Pipeline run.

11. Click Console Output to see the full output from the Pipeline run. The following output shows a
successful run of your Pipeline.

Notes:

◦ You can also access the console output directly from the Dashboard by clicking the colored
globe to the left of the build number (e.g. #1).

27

◦ Defining a Pipeline through the classic UI is convenient for testing Pipeline code snippets, or
for handling simple Pipelines or Pipelines that do not require source code to be checked
out/cloned from a repository. As mentioned above, unlike Jenkinsfiles you define through
Blue Ocean (above) or in source control (below), Jenkinsfiles entered into the Script text
area area of Pipeline projects are stored by Jenkins itself, within the Jenkins home directory.
Therefore, for greater control and flexibility over your Pipeline, particularly for projects in
source control that are likely to gain complexity, it is recommended that you use Blue Ocean
or source control to define your Jenkinsfile.

In SCM

Complex Pipelines are difficult to write and maintain within the classic UI’s Script text area of the
Pipeline configuration page.

To make this easier, your Pipeline’s Jenkinsfile can be written in a text editor or integrated
development environment (IDE) and committed to source control [2: Source control management]
(optionally with the application code that Jenkins will build). Jenkins can then check out your
Jenkinsfile from source control as part of your Pipeline project’s build process and then proceed to
execute your Pipeline.

To configure your Pipeline project to use a Jenkinsfile from source control:

1. Follow the procedure above for defining your Pipeline through the classic UI until you reach
step 5 (accessing the Pipeline section on the Pipeline configuration page).

2. From the Definition field, choose the Pipeline script from SCM option.

3. From the SCM field, choose the type of source control system of the repository containing your
Jenkinsfile.

4. Complete the fields specific to your repository’s source control system.
Tip: If you are uncertain of what value to specify for a given field, click its ? icon to the right for
more information.

5. In the Script Path field, specify the location (and name) of your Jenkinsfile. This location is the
one that Jenkins checks out/clones the repository containing your Jenkinsfile, which should
match that of the repository’s file structure. The default value of this field assumes that your
Jenkinsfile is named "Jenkinsfile" and is located at the root of the repository.

When you update the designated repository, a new build is triggered, as long as the Pipeline is
configured with an SCM polling trigger.

TIP

Since Pipeline code (i.e. Scripted Pipeline in particular) is written in Groovy-like
syntax, if your IDE is not correctly syntax highlighting your Jenkinsfile, try inserting
the line #!/usr/bin/env groovy at the top of the Jenkinsfile, [12: Shebang (general
definition)] [13: Shebang line (Groovy syntax)] which may rectify the issue.

Built-in Documentation
Pipeline ships with built-in documentation features to make it easier to create Pipelines of varying
complexities. This built-in documentation is automatically generated and updated based on the

28

#through-blue-ocean
#defining-a-pipeline-in-scm
#through-blue-ocean
#defining-a-pipeline-in-scm
#through-the-classic-ui
https://en.wikipedia.org/wiki/Version_control
#through-the-classic-ui
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://en.wikipedia.org/wiki/Shebang_(Unix)
http://groovy-lang.org/syntax.html#_shebang_line

plugins installed in the Jenkins instance.

The built-in documentation can be found globally at: localhost:8080/pipeline-syntax/, assuming you
have a Jenkins instance running on localhost port 8080. The same documentation is also linked as
Pipeline Syntax in the side-bar for any configured Pipeline project.

Snippet Generator

The built-in "Snippet Generator" utility is helpful for creating bits of code for individual steps,
discovering new steps provided by plugins, or experimenting with different parameters for a
particular step.

The Snippet Generator is dynamically populated with a list of the steps available to the Jenkins
instance. The number of steps available is dependent on the plugins installed which explicitly
expose steps for use in Pipeline.

To generate a step snippet with the Snippet Generator:

1. Navigate to the Pipeline Syntax link (referenced above) from a configured Pipeline, or at
localhost:8080/pipeline-syntax.

2. Select the desired step in the Sample Step dropdown menu

3. Use the dynamically populated area below the Sample Step dropdown to configure the selected
step.

4. Click Generate Pipeline Script to create a snippet of Pipeline which can be copied and pasted
into a Pipeline.

To access additional information and/or documentation about the step selected, click on the help
icon (indicated by the red arrow in the image above).

Global Variable Reference

In addition to the Snippet Generator, which only surfaces steps, Pipeline also provides a built-in
"Global Variable Reference." Like the Snippet Generator, it is also dynamically populated by
plugins. Unlike the Snippet Generator however, the Global Variable Reference only contains
documentation for variables provided by Pipeline or plugins, which are available for Pipelines.

The variables provided by default in Pipeline are:

env

Environment variables accessible from Scripted Pipeline, for example: env.PATH or env.BUILD_ID.
Consult the built-in Global Variable Reference for a complete, and up to date, list of environment
variables available in Pipeline.

29

http://localhost:8080/pipeline-syntax/
http://localhost:8080/pipeline-syntax
http://localhost:8080/pipeline-syntax/globals#env

params

Exposes all parameters defined for the Pipeline as a read-only Map, for example:
params.MY_PARAM_NAME.

currentBuild

May be used to discover information about the currently executing Pipeline, with properties
such as currentBuild.result, currentBuild.displayName, etc. Consult the built-in Global Variable
Reference for a complete, and up to date, list of properties available on currentBuild.

Declarative Directive Generator

While the Snippet Generator helps with generating steps for a Scripted Pipeline or for the steps
block in a stage in a Declarative Pipeline, it does not cover the sections and directives used to define
a Declarative Pipeline. The "Declarative Directive Generator" utility helps with that. Similar to the
Snippet Generator, the Directive Generator allows you to choose a Declarative directive, configure
it in a form, and generate the configuration for that directive, which you can then use in your
Declarative Pipeline.

To generate a Declarative directive using the Declarative Directive Generator:

1. Navigate to the Pipeline Syntax link (referenced above) from a configured Pipeline, and then
click on the Declarative Directive Generator link in the sidepanel, or go directly to
localhost:8080/directive-generator.

2. Select the desired directive in the dropdown menu

3. Use the dynamically populated area below the dropdown to configure the selected directive.

4. Click Generate Directive to create the directive’s configuration to copy into your Pipeline.

The Directive Generator can generate configuration for nested directives, such as conditions inside
a when directive, but it cannot generate Pipeline steps. For the contents of directives which contain
steps, such as steps insde a stage or conditions like always or failure inside post, the Directive
Generator adds a placeholder comment instead. You will still need to add steps to your Pipeline by
hand.

// Declarative //
stage('Stage 1') {
 steps {
 // One or more steps need to be included within the steps block.
 }
}
// Script //

Further Reading
This section merely scratches the surface of what can be done with Jenkins Pipeline, but should
provide enough of a foundation for you to start experimenting with a test Jenkins instance.

30

http://groovy-lang.org/syntax.html#_maps
http://localhost:8080/pipeline-syntax/globals#currentBuild
http://localhost:8080/pipeline-syntax/globals#currentBuild
../syntax#declarative-sections
../syntax#declarative-directives
http://localhost:8080/directive-generator

In the next section, The Jenkinsfile, more Pipeline steps will be discussed along with patterns for
implementing successful, real-world, Jenkins Pipelines.

Additional Resources

• Pipeline Steps Reference, encompassing all steps provided by plugins distributed in the Jenkins
Update Center.

• Pipeline Examples, a community-curated collection of copyable Pipeline examples.

31

jenkinsfile.pdf
../../../pipeline/steps
../../../pipeline/examples

Using a Jenkinsfile
This section builds on the information covered in Getting started with Pipeline and introduces
more useful steps, common patterns, and demonstrates some non-trivial Jenkinsfile examples.

Creating a Jenkinsfile, which is checked into source control [14: en.wikipedia.org/wiki/
Source_control_management], provides a number of immediate benefits:

• Code review/iteration on the Pipeline

• Audit trail for the Pipeline

• Single source of truth [15: en.wikipedia.org/wiki/Single_Source_of_Truth] for the Pipeline, which
can be viewed and edited by multiple members of the project.

Pipeline supports two syntaxes, Declarative (introduced in Pipeline 2.5) and Scripted Pipeline. Both
of which support building continuous delivery pipelines. Both may be used to define a Pipeline in
either the web UI or with a Jenkinsfile, though it’s generally considered a best practice to create a
Jenkinsfile and check the file into the source control repository.

Creating a Jenkinsfile
As discussed in the Defining a Pipeline in SCM, a Jenkinsfile is a text file that contains the
definition of a Jenkins Pipeline and is checked into source control. Consider the following Pipeline
which implements a basic three-stage continuous delivery pipeline.

32

../getting-started
https://en.wikipedia.org/wiki/Source_control_management
https://en.wikipedia.org/wiki/Source_control_management
https://en.wikipedia.org/wiki/Single_Source_of_Truth
../syntax
../getting-started#defining-a-pipeline-in-scm

// Declarative //
pipeline {
 agent any

 stages {
 stage('Build') {
 steps {
 echo 'Building..'
 }
 }
 stage('Test') {
 steps {
 echo 'Testing..'
 }
 }
 stage('Deploy') {
 steps {
 echo 'Deploying....'
 }
 }
 }
}
// Script //
node {
 stage('Build') {
 echo 'Building....'
 }
 stage('Test') {
 echo 'Building....'
 }
 stage('Deploy') {
 echo 'Deploying....'
 }
}

Not all Pipelines will have these same three stages, but it is a good starting point to define them for
most projects. The sections below will demonstrate the creation and execution of a simple Pipeline
in a test installation of Jenkins.

NOTE
It is assumed that there is already a source control repository set up for the project
and a Pipeline has been defined in Jenkins following these instructions.

Using a text editor, ideally one which supports Groovy syntax highlighting, create a new
Jenkinsfile in the root directory of the project.

The Declarative Pipeline example above contains the minimum necessary structure to implement a
continuous delivery pipeline. The agent directive, which is required, instructs Jenkins to allocate an
executor and workspace for the Pipeline. Without an agent directive, not only is the Declarative
Pipeline not valid, it would not be capable of doing any work! By default the agent directive ensures

33

getting-started.pdf#defining-a-pipeline-in-scm
http://groovy-lang.org
syntax.pdf#agent

that the source repository is checked out and made available for steps in the subsequent stages`

The stages directive, and steps directives are also required for a valid Declarative Pipeline as they
instruct Jenkins what to execute and in which stage it should be executed.

For more advanced usage with Scripted Pipeline, the example above node is a crucial first step
as it allocates an executor and workspace for the Pipeline. In essence, without node, a Pipeline
cannot do any work! From within node, the first order of business will be to checkout the
source code for this project. Since the Jenkinsfile is being pulled directly from source control,
Pipeline provides a quick and easy way to access the right revision of the source code

// Script //
node {
 checkout scm ①
 /* .. snip .. */
}
// Declarative not yet implemented //

① The checkout step will checkout code from source control; scm is a special variable which
instructs the checkout step to clone the specific revision which triggered this Pipeline run.

Build

For many projects the beginning of "work" in the Pipeline would be the "build" stage. Typically this
stage of the Pipeline will be where source code is assembled, compiled, or packaged. The
Jenkinsfile is not a replacement for an existing build tool such as GNU/Make, Maven, Gradle, etc,
but rather can be viewed as a glue layer to bind the multiple phases of a project’s development
lifecycle (build, test, deploy, etc) together.

Jenkins has a number of plugins for invoking practically any build tool in general use, but this
example will simply invoke make from a shell step (sh). The sh step assumes the system is
Unix/Linux-based, for Windows-based systems the bat could be used instead.

34

syntax.pdf#stages
syntax.pdf#steps

// Declarative //
pipeline {
 agent any

 stages {
 stage('Build') {
 steps {
 sh 'make' ①
 archiveArtifacts artifacts: '**/target/*.jar', fingerprint: true ②
 }
 }
 }
}
// Script //
node {
 stage('Build') {
 sh 'make' ①
 archiveArtifacts artifacts: '**/target/*.jar', fingerprint: true ②
 }
}

① The sh step invokes the make command and will only continue if a zero exit code is returned by
the command. Any non-zero exit code will fail the Pipeline.

② archiveArtifacts captures the files built matching the include pattern (**/target/*.jar) and
saves them to the Jenkins master for later retrieval.

TIP
Archiving artifacts is not a substitute for using external artifact repositories such as
Artifactory or Nexus and should be considered only for basic reporting and file
archival.

Test

Running automated tests is a crucial component of any successful continuous delivery process. As
such, Jenkins has a number of test recording, reporting, and visualization facilities provided by a
number of plugins. At a fundamental level, when there are test failures, it is useful to have Jenkins
record the failures for reporting and visualization in the web UI. The example below uses the junit
step, provided by the plugin:junit[JUnit plugin].

In the example below, if tests fail, the Pipeline is marked "unstable", as denoted by a yellow ball in
the web UI. Based on the recorded test reports, Jenkins can also provide historical trend analysis
and visualization.

35

https://plugins.jenkins.io/?labels=report

// Declarative //
pipeline {
 agent any

 stages {
 stage('Test') {
 steps {
 /* `make check` returns non-zero on test failures,
 * using `true` to allow the Pipeline to continue nonetheless
 */
 sh 'make check || true' ①
 junit '**/target/*.xml' ②
 }
 }
 }
}
// Script //
node {
 /* .. snip .. */
 stage('Test') {
 /* `make check` returns non-zero on test failures,
 * using `true` to allow the Pipeline to continue nonetheless
 */
 sh 'make check || true' ①
 junit '**/target/*.xml' ②
 }
 /* .. snip .. */
}

① Using an inline shell conditional (sh 'make check || true') ensures that the sh step always sees a
zero exit code, giving the junit step the opportunity to capture and process the test reports.
Alternative approaches to this are covered in more detail in the [handling-failure] section below.

② junit captures and associates the JUnit XML files matching the inclusion pattern
(**/target/*.xml).

Deploy

Deployment can imply a variety of steps, depending on the project or organization requirements,
and may be anything from publishing built artifacts to an Artifactory server, to pushing code to a
production system.

At this stage of the example Pipeline, both the "Build" and "Test" stages have successfully executed.
In essence, the "Deploy" stage will only execute assuming previous stages completed successfully,
otherwise the Pipeline would have exited early.

36

// Declarative //
pipeline {
 agent any

 stages {
 stage('Deploy') {
 when {
 expression {
 currentBuild.result == null || currentBuild.result == 'SUCCESS' ①
 }
 }
 steps {
 sh 'make publish'
 }
 }
 }
}
// Script //
node {
 /* .. snip .. */
 stage('Deploy') {
 if (currentBuild.result == null || currentBuild.result == 'SUCCESS') { ①
 sh 'make publish'
 }
 }
 /* .. snip .. */
}

① Accessing the currentBuild.result variable allows the Pipeline to determine if there were any
test failures. In which case, the value would be UNSTABLE.

Assuming everything has executed successfully in the example Jenkins Pipeline, each successful
Pipeline run will have associated build artifacts archived, test results reported upon and the full
console output all in Jenkins.

A Scripted Pipeline can include conditional tests (shown above), loops, try/catch/finally blocks and
even functions. The next section will cover this advanced Scripted Pipeline syntax in more detail.

Working with your Jenkinsfile
The following sections provide details about handling:

• specific Pipeline syntax in your Jenkinsfile and

• features and functionality of Pipeline syntax which are essential in building your application or
Pipeline project.

String interpolation

Jenkins Pipeline uses rules identical to Groovy for string interpolation. Groovy’s String

37

http://groovy-lang.org

interpolation support can be confusing to many newcomers to the language. While Groovy
supports declaring a string with either single quotes, or double quotes, for example:

def singlyQuoted = 'Hello'
def doublyQuoted = "World"

Only the latter string will support the dollar-sign ($) based string interpolation, for example:

def username = 'Jenkins'
echo 'Hello Mr. ${username}'
echo "I said, Hello Mr. ${username}"

Would result in:

Hello Mr. ${username}
I said, Hello Mr. Jenkins

Understanding how to use string interpolation is vital for using some of Pipeline’s more advanced
features.

Using environment variables

Jenkins Pipeline exposes environment variables via the global variable env, which is available from
anywhere within a Jenkinsfile. The full list of environment variables accessible from within
Jenkins Pipeline is documented at localhost:8080/pipeline-syntax/globals#env, assuming a Jenkins
master is running on localhost:8080, and includes:

BUILD_ID

The current build ID, identical to BUILD_NUMBER for builds created in Jenkins versions 1.597+

JOB_NAME

Name of the project of this build, such as "foo" or "foo/bar".

JENKINS_URL

Full URL of Jenkins, such as example.com:port/jenkins/ (NOTE: only available if Jenkins URL set
in "System Configuration")

Referencing or using these environment variables can be accomplished like accessing any key in a
Groovy Map, for example:

38

http://localhost:8080/pipeline-syntax/globals#env
http://example.com:port/jenkins/
http://groovy-lang.org/syntax.html#_maps

// Declarative //
pipeline {
 agent any
 stages {
 stage('Example') {
 steps {
 echo "Running ${env.BUILD_ID} on ${env.JENKINS_URL}"
 }
 }
 }
}
// Script //
node {
 echo "Running ${env.BUILD_ID} on ${env.JENKINS_URL}"
}

Setting environment variables

Setting an environment variable within a Jenkins Pipeline is accomplished differently depending
on whether Declarative or Scripted Pipeline is used.

Declarative Pipeline supports an environment directive, whereas users of Scripted Pipeline must
use the withEnv step.

// Declarative //
pipeline {
 agent any
 environment { ①
 CC = 'clang'
 }
 stages {
 stage('Example') {
 environment { ②
 DEBUG_FLAGS = '-g'
 }
 steps {
 sh 'printenv'
 }
 }
 }
}
// Script //
node {
 /* .. snip .. */
 withEnv(["PATH+MAVEN=${tool 'M3'}/bin"]) {
 sh 'mvn -B verify'
 }
}

39

syntax.pdf#environment

① An environment directive used in the top-level pipeline block will apply to all steps within the
Pipeline.

② An environment directive defined within a stage will only apply the given environment variables
to steps within the stage.

Setting environment variables dynamically

In the case where environment variable need to be set dynamically at run time this can be done
with the use of a shell scripts (sh), Windows Batch Script (bat) or PowerShell Script (powershell).
Each script can either returnStatus or returnStdout. More information on scripts.

Below is an example in a declarative pipeline using sh (shell) with both returnStatus and
returnStdout.

// Declarative //
pipeline {
 agent any ①
 environment {
 // Using returnStdout
 CC = """${sh(
 returnStdout: true,
 script: 'echo "clang"'
)}""" ②
 // Using returnStatus
 EXIT_STATUS = """${sh(
 returnStatus: true,
 script: 'exit 1'
)}"""
 }
 stages {
 stage('Example') {
 environment {
 DEBUG_FLAGS = '-g'
 }
 steps {
 sh 'printenv'
 }
 }
 }
}
// Script //

① An agent must be set at the top level of the pipeline. This will fail if agent is set as agent none.

② When using returnStdout a trailing whitespace will be append to the returned string. Use .trim()
to remove this.

Handling credentials

Credentials configured in Jenkins can be handled in Pipelines for immediate use. Read more about

40

https://jenkins.io/doc/pipeline/steps/workflow-durable-task-step
../../using/using-credentials#configuring-credentials

using credentials in Jenkins on the Using credentials page.

For secret text, usernames and passwords, and secret files

Jenkins' declarative Pipeline syntax has the credentials() helper method (used within the
environment directive) which supports secret text, username and password, as well as secret file
credentials. If you want to handle other types of credentials, refer to the For other credential types
section (below).

Secret text

The following Pipeline code shows an example of how to create a Pipeline using environment
variables for secret text credentials.

In this example, two secret text credentials are assigned to separate environment variables to
access Amazon Web Services (AWS). These credentials would have been configured in Jenkins with
their respective credential IDs
jenkins-aws-secret-key-id and jenkins-aws-secret-access-key.

// Declarative //
pipeline {
 agent {
 // Define agent details here
 }
 environment {
 AWS_ACCESS_KEY_ID = credentials('jenkins-aws-secret-key-id')
 AWS_SECRET_ACCESS_KEY = credentials('jenkins-aws-secret-access-key')
 }
 stages {
 stage('Example stage 1') {
 steps {
 // ①
 }
 }
 stage('Example stage 2') {
 steps {
 // ②
 }
 }
 }
}
// Script //

① You can reference the two credential environment variables (defined in this Pipeline’s
environment directive), within this stage’s steps using the syntax $AWS_ACCESS_KEY_ID and
$AWS_SECRET_ACCESS_KEY. For example, here you can authenticate to AWS using the secret text
credentials assigned to these credential variables.
To maintain the security and anonymity of these credentials, if you attempt to retrieve the value
of these credential variables from within the Pipeline (e.g. echo $AWS_SECRET_ACCESS_KEY), Jenkins
only returns the value “****” to prevent secret information from being written to the console

41

../../using/using-credentials
syntax.pdf#environment
syntax.pdf#environment

output and any logs. Any sensitive information in credential IDs themselves (such as usernames)
are also returned as “****” in the Pipeline run’s output.

② In this Pipeline example, the credentials assigned to the two AWS_… environment variables are
scoped globally for the entire Pipeline, so these credential variables could also be used in this
stage’s steps. If, however, the environment directive in this Pipeline were moved to a specific
stage (as is the case in the Usernames and passwords Pipeline example below), then these AWS_…
environment variables would only be scoped to the steps in that stage.

Usernames and passwords

The following Pipeline code snippets show an example of how to create a Pipeline using
environment variables for username and password credentials.

In this example, username and password credentials are assigned to environment variables to
access a Bitbucket repository in a common account or team for your organization; these credentials
would have been configured in Jenkins with the credential ID jenkins-bitbucket-common-creds.

When setting the credential environment variable in the environment directive:

environment {
 BITBUCKET_COMMON_CREDS = credentials('jenkins-bitbucket-common-creds')
}

this actually sets the following three environment variables:

• BITBUCKET_COMMON_CREDS - contains a username and a password separated by a colon in the
format username:password.

• BITBUCKET_COMMON_CREDS_USR - an additional variable containing the username component only.

• BITBUCKET_COMMON_CREDS_PSW - an additional variable containing the password component only.

NOTE

By convention, variable names for environment variables are typically specified in
capital case, with individual words separated by underscores. You can, however,
specify any legitimate variable name using lower case characters. Bear in mind that
the additional environment variables created by the credentials() method (above)
will always be appended with _USR and _PSW (i.e. in the format of an underscore
followed by three capital letters).

The following code snippet shows the example Pipeline in its entirety:

42

syntax.pdf#environment

// Declarative //
pipeline {
 agent {
 // Define agent details here
 }
 stages {
 stage('Example stage 1') {
 environment {
 BITBUCKET_COMMON_CREDS = credentials('jenkins-bitbucket-common-creds')
 }
 steps {
 // ①
 }
 }
 stage('Example stage 2') {
 steps {
 // ②
 }
 }
 }
}
// Script //

① The following credential environment variables (defined in this Pipeline’s environment directive)
are available within this stage’s steps and can be referenced using the syntax:

• $BITBUCKET_COMMON_CREDS

• $BITBUCKET_COMMON_CREDS_USR

• $BITBUCKET_COMMON_CREDS_PSW

For example, here you can authenticate to Bitbucket with the username and password assigned
to these credential variables.
To maintain the security and anonymity of these credentials, if you attempt to retrieve the value
of these credential variables from within the Pipeline, the same behavior described in the Secret
text example above applies to these username and password credential variable types too.

② In this Pipeline example, the credentials assigned to the three COMMON_BITBUCKET_CREDS…
environment variables are scoped only to Example stage 1, so these credential variables are not
available for use in this Example stage 2 stage’s steps. If, however, the environment directive in
this Pipeline were moved immediately within the pipeline block (as is the case in the Secret text
Pipeline example above), then these COMMON_BITBUCKET_CREDS… environment variables would be
scoped globally and could be used in any stage’s steps.

Secret files

As far as Pipelines are concerned, secret files are handled in exactly the same manner as secret text
(above).

Essentially, the only difference between secret text and secret file credentials are that for secret
text, the credential itself is entered directly into Jenkins whereas for a secret file, the credential is

43

syntax.pdf#environment
syntax.pdf#declarative-pipeline

originally stored in a file which is then uploaded to Jenkins.

Unlike secret text, secret files cater for credentials that are:

• too unwieldy to enter directly into Jenkins, and/or

• in binary format, such as a GPG file.

For other credential types

If you need to set credentials in a Pipeline for anything other than secret text, usernames and
passwords, or secret files (above) - i.e SSH keys or certificates, then use Jenkins' Snippet Generator
feature, which you can access through Jenkins' classic UI.

To access the Snippet Generator for your Pipeline project/item:

1. From the Jenkins home page (i.e. the Dashboard of Jenkins' classic UI), click the name of your
Pipeline project/item.

2. On the left, click Pipeline Syntax and ensure that the Snippet Generator link is in bold at the
top-left. (If not, click its link.)

3. From the Sample Step field, choose withCredentials: Bind credentials to variables.

4. Under Bindings, click Add and choose from the dropdown:

◦ SSH User Private Key - to handle SSH public/private key pair credentials, from which you
can specify:

▪ Key File Variable - the name of the environment variable that will be bound to these
credentials. Jenkins actually assigns this temporary variable to the secure location of the
private key file required in the SSH public/private key pair authentication process.

▪ Passphrase Variable (Optional) - the name of the environment variable that will be
bound to the passphrase associated with the SSH public/private key pair.

▪ Username Variable (Optional) - the name of the environment variable that will be
bound to username associated with the SSH public/private key pair.

▪ Credentials - choose the SSH public/private key credentials stored in Jenkins. The value
of this field is the credential ID, which Jenkins writes out to the generated snippet.

◦ Certificate - to handle PKCS#12 certificates, from which you can specify:

▪ Keystore Variable - the name of the environment variable that will be bound to these
credentials. Jenkins actually assigns this temporary variable to the secure location of the
certificate’s keystore required in the certificate authentication process.

▪ Password Variable (Optional) - the name of the environment variable that will be
bound to the password associated with the certificate.

▪ Alias Variable (Optional) - the name of the environment variable that will be bound to
the unique alias associated with the certificate.

▪ Credentials - choose the certificate credentials stored in Jenkins. The value of this field
is the credential ID, which Jenkins writes out to the generated snippet.

◦ Docker client certificate - to handle Docker Host Certificate Authentication.

44

http://www.snailbook.com/protocols.html
https://tools.ietf.org/html/rfc4251#section-9.4.4
https://tools.ietf.org/html/rfc7292

5. Click Generate Pipeline Script and Jenkins generates a withCredentials(…) { … } Pipeline
step snippet for the credentials you specified, which you can then copy and paste into your
Declarative or Scripted Pipeline code.
Notes:

◦ The Credentials fields (above) show the names of credentials configured in Jenkins.
However, these values are converted to credential IDs after clicking Generate Pipeline
Script.

◦ To combine more than one credential in a single withCredentials(…) { … } Pipeline step,
see Combining credentials in one step (below) for details.

SSH User Private Key example

withCredentials(bindings: [sshUserPrivateKey(credentialsId: 'jenkins-ssh-key-for-abc',
\
 keyFileVariable: 'SSH_KEY_FOR_ABC', \
 passphraseVariable: '', \
 usernameVariable: '')]) {
 // some block
}

The optional passphraseVariable and usernameVariable definitions can be deleted in your final
Pipeline code.

Certificate example

withCredentials(bindings: [certificate(aliasVariable: '', \
 credentialsId: 'jenkins-certificate-for-xyz', \
 keystoreVariable: 'CERTIFICATE_FOR_XYZ', \
 passwordVariable: 'XYZ-CERTIFICATE-PASSWORD')])
{
 // some block
}

The optional aliasVariable and passwordVariable variable definitions can be deleted in your final
Pipeline code.

The following code snippet shows an example Pipeline in its entirety, which implements the SSH
User Private Key and Certificate snippets above:

45

// Declarative //
pipeline {
 agent {
 // define agent details
 }
 stages {
 stage('Example stage 1') {
 steps {
 withCredentials(bindings: [sshUserPrivateKey(credentialsId: 'jenkins-
ssh-key-for-abc', \
 keyFileVariable:
'SSH_KEY_FOR_ABC')]) {
 // ①
 }
 withCredentials(bindings: [certificate(credentialsId: 'jenkins-
certificate-for-xyz', \
 keystoreVariable:
'CERTIFICATE_FOR_XYZ', \
 passwordVariable: 'XYZ-
CERTIFICATE-PASSWORD')]) {
 // ②
 }
 }
 }
 stage('Example stage 2') {
 steps {
 // ③
 }
 }
 }
}
// Script //

① Within this step, you can reference the credential environment variable with the syntax
$SSH_KEY_FOR_ABC. For example, here you can authenticate to the ABC application with its
configured SSH public/private key pair credentials, whose SSH User Private Key file is assigned
to $SSH_KEY_FOR_ABC.

② Within this step, you can reference the credential environment variable with the syntax
$CERTIFICATE_FOR_XYZ and
$XYZ-CERTIFICATE-PASSWORD. For example, here you can authenticate to the XYZ application with
its configured certificate credentials, whose Certificate's keystore file and password are
assigned to the variables $CERTIFICATE_FOR_XYZ and $XYZ-CERTIFICATE-PASSWORD, respectively.

③ In this Pipeline example, the credentials assigned to the $SSH_KEY_FOR_ABC, $CERTIFICATE_FOR_XYZ
and
$XYZ-CERTIFICATE-PASSWORD environment variables are scoped only within their respective
withCredentials(…) { … } steps, so these credential variables are not available for use in this
Example stage 2 stage’s steps.

46

To maintain the security and anonymity of these credentials, if you attempt to retrieve the value of
these credential variables from within these withCredentials(…) { … } steps, the same behavior
described in the Secret text example (above) applies to these SSH public/private key pair credential
and certificate variable types too.

NOTE

• When using the Sample Step field’s withCredentials: Bind credentials to
variables option in the Snippet Generator, only credentials which your
current Pipeline project/item has access to can be selected from any Credentials
field’s list. While you can manually write a withCredentials(…) { … } step
for your Pipeline (like the examples above), using the Snippet Generator is
recommended to avoid specifying credentials that are out of scope for this
Pipeline project/item, which when run, will make the step fail.

• You can also use the Snippet Generator to generate withCredentials(…) { …
} steps to handle secret text, usernames and passwords and secret files.
However, if you only need to handle these types of credentials, it is
recommended you use the relevant procedure described in the section above
for improved Pipeline code readability.

• The use of single-quotes instead of double-quotes to define the script (the
implicit parameter to sh) in Groovy above. The single-quotes will cause the
secret to be expanded by the shell as an environment variable. The double-
quotes are potentially less secure as the secret is interpolated by Groovy, and so
typical operating system process listings (as well as Blue Ocean, and the pipeline
steps tree in the classic UI) will accidentally disclose it :

node {
 withCredentials([string(credentialsId: 'mytoken', variable: 'TOKEN')])
{
 sh /* WRONG! */ """
 set +x
 curl -H 'Token: $TOKEN' https://some.api/
 """
 sh /* CORRECT */ '''
 set +x
 curl -H 'Token: $TOKEN' https://some.api/
 '''
 }
}

Combining credentials in one step

Using the Snippet Generator, you can make multiple credentials available within a single
withCredentials(…) { … } step by doing the following:

1. From the Jenkins home page (i.e. the Dashboard of Jenkins' classic UI), click the name of your
Pipeline project/item.

2. On the left, click Pipeline Syntax and ensure that the Snippet Generator link is in bold at the
top-left. (If not, click its link.)

47

3. From the Sample Step field, choose withCredentials: Bind credentials to variables.

4. Click Add under Bindings.

5. Choose the credential type to add to the withCredentials(…) { … } step from the dropdown
list.

6. Specify the credential Bindings details. Read more above these in the procedure under For
other credential types (above).

7. Repeat from "Click Add …" (above) for each (set of) credential/s to add to the withCredentials(
…) { … } step.

8. Click Generate Pipeline Script to generate the final withCredentials(…) { … } step snippet.

Handling parameters

Declarative Pipeline supports parameters out-of-the-box, allowing the Pipeline to accept user-
specified parameters at runtime via the parameters directive. Configuring parameters with
Scripted Pipeline is done with the properties step, which can be found in the Snippet Generator.

If you configured your pipeline to accept parameters using the Build with Parameters option,
those parameters are accessible as members of the params variable.

Assuming that a String parameter named "Greeting" has been configuring in the Jenkinsfile, it can
access that parameter via ${params.Greeting}:

// Declarative //
pipeline {
 agent any
 parameters {
 string(name: 'Greeting', defaultValue: 'Hello', description: 'How should I
greet the world?')
 }
 stages {
 stage('Example') {
 steps {
 echo "${params.Greeting} World!"
 }
 }
 }
}
// Script //
properties([parameters([string(defaultValue: 'Hello', description: 'How should I greet
the world?', name: 'Greeting')])])

node {
 echo "${params.Greeting} World!"
}

48

syntax.pdf#parameters

Handling failure

Declarative Pipeline supports robust failure handling by default via its post section which allows
declaring a number of different "post conditions" such as: always, unstable, success, failure, and
changed. The Pipeline Syntax section provides more detail on how to use the various post conditions.

// Declarative //
pipeline {
 agent any
 stages {
 stage('Test') {
 steps {
 sh 'make check'
 }
 }
 }
 post {
 always {
 junit '**/target/*.xml'
 }
 failure {
 mail to: team@example.com, subject: 'The Pipeline failed :('
 }
 }
}
// Script //
node {
 /* .. snip .. */
 stage('Test') {
 try {
 sh 'make check'
 }
 finally {
 junit '**/target/*.xml'
 }
 }
 /* .. snip .. */
}

49

syntax.pdf#post

Scripted Pipeline however relies on Groovy’s built-in try/catch/finally semantics for handling
failures during execution of the Pipeline.

In the [test] example above, the sh step was modified to never return a non-zero exit code (sh
'make check || true'). This approach, while valid, means the following stages need to check
currentBuild.result to know if there has been a test failure or not.

An alternative way of handling this, which preserves the early-exit behavior of failures in
Pipeline, while still giving junit the chance to capture test reports, is to use a series of try
/finally blocks:

Using multiple agents

In all the previous examples, only a single agent has been used. This means Jenkins will allocate an
executor wherever one is available, regardless of how it is labeled or configured. Not only can this
behavior be overridden, but Pipeline allows utilizing multiple agents in the Jenkins environment
from within the same Jenkinsfile, which can helpful for more advanced use-cases such as
executing builds/tests across multiple platforms.

In the example below, the "Build" stage will be performed on one agent and the built results will be
reused on two subsequent agents, labelled "linux" and "windows" respectively, during the "Test"
stage.

// Declarative //
pipeline {
 agent none
 stages {
 stage('Build') {
 agent any
 steps {
 checkout scm
 sh 'make'
 stash includes: '**/target/*.jar', name: 'app' ①
 }
 }
 stage('Test on Linux') {
 agent { ②
 label 'linux'
 }
 steps {
 unstash 'app' ③
 sh 'make check'
 }
 post {
 always {
 junit '**/target/*.xml'
 }
 }

50

 }
 stage('Test on Windows') {
 agent {
 label 'windows'
 }
 steps {
 unstash 'app'
 bat 'make check' ④
 }
 post {
 always {
 junit '**/target/*.xml'
 }
 }
 }
 }
}
// Script //
stage('Build') {
 node {
 checkout scm
 sh 'make'
 stash includes: '**/target/*.jar', name: 'app' ①
 }
}

stage('Test') {
 node('linux') { ②
 checkout scm
 try {
 unstash 'app' ③
 sh 'make check'
 }
 finally {
 junit '**/target/*.xml'
 }
 }
 node('windows') {
 checkout scm
 try {
 unstash 'app'
 bat 'make check' ④
 }
 finally {
 junit '**/target/*.xml'
 }
 }
}

① The stash step allows capturing files matching an inclusion pattern (**/target/*.jar) for reuse
within the same Pipeline. Once the Pipeline has completed its execution, stashed files are deleted

51

from the Jenkins master.

② The parameter in agent/node allows for any valid Jenkins label expression. Consult the Pipeline
Syntax section for more details.

③ unstash will retrieve the named "stash" from the Jenkins master into the Pipeline’s current
workspace.

④ The bat script allows for executing batch scripts on Windows-based platforms.

Optional step arguments

Pipeline follows the Groovy language convention of allowing parentheses to be omitted around
method arguments.

Many Pipeline steps also use the named-parameter syntax as a shorthand for creating a Map in
Groovy, which uses the syntax [key1: value1, key2: value2]. Making statements like the following
functionally equivalent:

git url: 'git://example.com/amazing-project.git', branch: 'master'
git([url: 'git://example.com/amazing-project.git', branch: 'master'])

For convenience, when calling steps taking only one parameter (or only one mandatory parameter),
the parameter name may be omitted, for example:

sh 'echo hello' /* short form */
sh([script: 'echo hello']) /* long form */

Advanced Scripted Pipeline

Scripted Pipeline is a domain-specific language [16: en.wikipedia.org/wiki/Domain-
specific_language] based on Groovy, most Groovy syntax can be used in Scripted Pipeline without
modification.

Parallel execution

The example in the section above runs tests across two different platforms in a linear series. In
practice, if the make check execution takes 30 minutes to complete, the "Test" stage would now take
60 minutes to complete!

Fortunately, Pipeline has built-in functionality for executing portions of Scripted Pipeline in
parallel, implemented in the aptly named parallel step.

Refactoring the example above to use the parallel step:

52

syntax.pdf
syntax.pdf
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
http://groovy-lang.org/semantics.html

// Script //
stage('Build') {
 /* .. snip .. */
}

stage('Test') {
 parallel linux: {
 node('linux') {
 checkout scm
 try {
 unstash 'app'
 sh 'make check'
 }
 finally {
 junit '**/target/*.xml'
 }
 }
 },
 windows: {
 node('windows') {
 /* .. snip .. */
 }
 }
}
// Declarative not yet implemented //

Instead of executing the tests on the "linux" and "windows" labelled nodes in series, they will now
execute in parallel assuming the requisite capacity exists in the Jenkins environment.

Running a Pipeline

Multibranch

See the Multibranch documentation for more information.

Parameters

See the Jenkinsfile documentation for more information

Restarting or Rerunning a Pipeline
There are a number of ways to rerun or restart a completed Pipeline.

Replay

See the Replay documentation for more information.

53

jenkinsfile.pdf#handling-parameters
development.pdf#replay

Restart from a Stage

You can restart any completed Declarative Pipeline from any top-level stage which ran in that
Pipeline. This allows you to rerun a Pipeline from a stage which failed due to transient or
environmental considerations, for example. All inputs to the Pipeline will be the same. This
includes SCM information, build parameters, and the contents of any stash step calls in the original
Pipeline, if specified.

Currently, the UI for restarting a stage in a Declarative Pipeline is only available in the Classic
Jenkins UI. Blue Ocean will be adding support for stage restarting in the near future.

How to Use

No additional configuration is needed in the Jenkinsfile to allow you to restart stages in your
Declarative Pipelines. This is an inherent part of Declarative Pipelines and is available
automatically. Once your Pipeline has completed, whether it succeeds or fails, you can go to the side
panel for the run in the classic UI and click on "Restart from Stage".

You will be prompted to choose from a list of top-level stages that were executed in the original run,
in the order they were executed. Stages which were skipped due to an earlier failure will not be
available to be restarted, but stages which were skipped due to a when condition not being satisfied
will be available. The parent stage for a group of parallel stages, or a group of nested stages to be
run sequentially will also not be available - only top-level stages are allowed.

54

Once you choose a stage to restart from and click submit, a new build, with a new build number,
will be started. All stages before the selected stage will be skipped, and the Pipeline will start
executing at the selected stage. From that point on, the Pipeline will run as normal.

Preserving `stash`es for Use with Restarted Stages

Normally, when you run the stash step in your Pipeline, the resulting stash of artifacts is cleared
when the Pipeline completes, regardless of the result of the Pipeline. Since stash artifacts aren’t
accessible outside of the Pipeline run that created them, this has not created any limitations on
usage. But with Declarative stage restarting, you may want to be able to unstash artifacts from a
stage which ran before the stage you’re restarting from.

To enable this, there is a job property that allows you to configure a maximum number of
completed runs whose stash artifacts should be preserved for reuse in a restarted run. You can
specify anywhere from 1 to 50 as the number of runs to preserve.

This job property can be configured in your Declarative Pipeline’s options section, as below:

options {
 preserveStashes() ①
 // or
 preserveStashes(buildCount: 5) ②
}

① The default number of runs to preserve is 1, just the most recent completed build.

② If a number for buildCount outside of the range of 1 to 50 is specified, the Pipeline will fail with a
validation error.

When a Pipeline completes, it will check to see if any previously completed runs should have their
stash artifacts cleared.

55

Branches and Pull Requests
In the previous section a Jenkinsfile which could be checked into source control was implemented.
This section covers the concept of Multibranch Pipelines which build on the Jenkinsfile

foundation to provide more dynamic and automatic functionality in Jenkins.

Creating a Multibranch Pipeline
The Multibranch Pipeline project type enables you to implement different Jenkinsfiles for
different branches of the same project. In a Multibranch Pipeline project, Jenkins automatically
discovers, manages and executes Pipelines for branches which contain a Jenkinsfile in source
control.

This eliminates the need for manual Pipeline creation and management.

To create a Multibranch Pipeline:

• Click New Item on Jenkins home page.

• Enter a name for your Pipeline, select Multibranch Pipeline and click OK.

CAUTION
Jenkins uses the name of the Pipeline to create directories on disk. Pipeline
names which include spaces may uncover bugs in scripts which do not expect
paths to contain spaces.

56

jenkinsfile.pdf

• Add a Branch Source (for example, Git) and enter the location of the repository.

57

• Save the Multibranch Pipeline project.

Upon Save, Jenkins automatically scans the designated repository and creates appropriate items for
each branch in the repository which contains a Jenkinsfile.

58

By default, Jenkins will not automatically re-index the repository for branch additions or deletions
(unless using an Organization Folder), so it is often useful to configure a Multibranch Pipeline to
periodically re-index in the configuration:

Additional Environment Variables

Multibranch Pipelines expose additional information about the branch being built through the env
global variable, such as:

BRANCH_NAME

Name of the branch for which this Pipeline is executing, for example master.

CHANGE_ID

An identifier corresponding to some kind of change request, such as a pull request number

Additional environment variables are listed in the Global Variable Reference.

Supporting Pull Requests

With the "GitHub" or "Bitbucket" Branch Sources, Multibranch Pipelines can be used for validating
pull/change requests. This functionality is provided, respectively, by the plugin:github-branch-
source[GitHub Branch Source] and plugin:cloudbees-bitbucket-branch-source[Bitbucket Branch
Source] plugins. Please consult their documentation for further information on how to use those
plugins.

Using Organization Folders
Organization Folders enable Jenkins to monitor an entire GitHub Organization, or Bitbucket
Team/Project and automatically create new Multibranch Pipelines for repositories which contain
branches and pull requests containing a Jenkinsfile.

Currently, this functionality exists only for GitHub and Bitbucket, with functionality provided by
the plugin:github-organization-folder[GitHub Organization Folder] and plugin:cloudbees-bitbucket-
branch-source[Bitbucket Branch Source] plugins.

59

getting-started.pdf#global-variable-reference#

Using Docker with Pipeline
Many organizations use Docker to unify their build and test environments across machines, and to
provide an efficient mechanism for deploying applications. Starting with Pipeline versions 2.5 and
higher, Pipeline has built-in support for interacting with Docker from within a Jenkinsfile.

While this section will cover the basics of utilizing Docker from with a Jenkinsfile, it will not cover
the fundamentals of Docker, which can be read about in the Docker Getting Started Guide.

Customizing the execution environment
Pipeline is designed to easily use Docker images as the execution environment for a single Stage or
the entire Pipeline. Meaning that a user can define the tools required for their Pipeline, without
having to manually configure agents. Practically any tool which can be packaged in a Docker
container. can be used with ease by making only minor edits to a Jenkinsfile.

// Declarative //
pipeline {
 agent {
 docker { image 'node:7-alpine' }
 }
 stages {
 stage('Test') {
 steps {
 sh 'node --version'
 }
 }
 }
}
// Script //
node {
 /* Requires the Docker Pipeline plugin to be installed */
 docker.image('node:7-alpine').inside {
 stage('Test') {
 sh 'node --version'
 }
 }
}

When the Pipeline executes, Jenkins will automatically start the specified container and execute the
defined steps within it:

60

https://www.docker.com
https://docs.docker.com/get-started/
https://docs.docker.com/
../../glossary/#stage
http://hub.docker.com
http://hub.docker.com

[Pipeline] stage
[Pipeline] { (Test)
[Pipeline] sh
[guided-tour] Running shell script
+ node --version
v7.4.0
[Pipeline] }
[Pipeline] // stage
[Pipeline] }

Caching data for containers

Many build tools will download external dependencies and cache them locally for future re-use.
Since containers are initially created with "clean" file systems, this can result in slower Pipelines, as
they may not take advantage of on-disk caches between subsequent Pipeline runs.

Pipeline supports adding custom arguments which are passed to Docker, allowing users to specify
custom Docker Volumes to mount, which can be used for caching data on the agent between
Pipeline runs. The following example will cache ~/.m2 between Pipeline runs utilizing the maven
container, thereby avoiding the need to re-download dependencies for subsequent runs of the
Pipeline.

// Declarative //
pipeline {
 agent {
 docker {
 image 'maven:3-alpine'
 args '-v $HOME/.m2:/root/.m2'
 }
 }
 stages {
 stage('Build') {
 steps {
 sh 'mvn -B'
 }
 }
 }
}
// Script //
node {
 /* Requires the Docker Pipeline plugin to be installed */
 docker.image('maven:3-alpine').inside('-v $HOME/.m2:/root/.m2') {
 stage('Build') {
 sh 'mvn -B'
 }
 }
}

61

https://docs.docker.com/engine/tutorials/dockervolumes/
../../glossary/#agent
https://hub.docker.com/_/maven/
https://hub.docker.com/_/maven/
https://hub.docker.com/_/maven/

Using multiple containers

It has become increasingly common for code bases to rely on multiple, different, technologies. For
example, a repository might have both a Java-based back-end API implementation and a JavaScript-
based front-end implementation. Combining Docker and Pipeline allows a Jenkinsfile to use
multiple types of technologies by combining the agent {} directive, with different stages.

// Declarative //
pipeline {
 agent none
 stages {
 stage('Back-end') {
 agent {
 docker { image 'maven:3-alpine' }
 }
 steps {
 sh 'mvn --version'
 }
 }
 stage('Front-end') {
 agent {
 docker { image 'node:7-alpine' }
 }
 steps {
 sh 'node --version'
 }
 }
 }
}
// Script //
node {
 /* Requires the Docker Pipeline plugin to be installed */

 stage('Back-end') {
 docker.image('maven:3-alpine').inside {
 sh 'mvn --version'
 }
 }

 stage('Front-end') {
 docker.image('node:7-alpine').inside {
 sh 'node --version'
 }
 }
}

Using a Dockerfile

For projects which require a more customized execution environment, Pipeline also supports

62

building and running a container from a Dockerfile in the source repository. In contrast to the
previous approach of using an "off-the-shelf" container, using the agent { dockerfile true } syntax
will build a new image from a Dockerfile rather than pulling one from Docker Hub.

Re-using an example from above, with a more custom Dockerfile:

Dockerfile

FROM node:7-alpine

RUN apk add -U subversion

By committing this to the root of the source repository, the Jenkinsfile can be changed to build a
container based on this Dockerfile and then run the defined steps using that container:

// Declarative //
pipeline {
 agent { dockerfile true }
 stages {
 stage('Test') {
 steps {
 sh 'node --version'
 sh 'svn --version'
 }
 }
 }
}
// Script //

The agent { dockerfile true } syntax supports a number of other options which are described in
more detail in the Pipeline Syntax section.

63

https://hub.docker.com
../syntax#agent

Using a Dockerfile with Jenkins Pipeline

Specifying a Docker Label

By default, Pipeline assumes that any configured agent is capable of running Docker-based
Pipelines. For Jenkins environments which have macOS, Windows, or other agents, which are
unable to run the Docker daemon, this default setting may be problematic. Pipeline provides a
global option in the Manage Jenkins page, and on the Folder level, for specifying which agents (by
Label) to use for running Docker-based Pipelines.

Advanced Usage with Scripted Pipeline

Running "sidecar" containers

Using Docker in Pipeline can be an effective way to run a service on which the build, or a set of
tests, may rely. Similar to the sidecar pattern, Docker Pipeline can run one container "in the
background", while performing work in another. Utilizing this sidecar approach, a Pipeline can
have a "clean" container provisioned for each Pipeline run.

Consider a hypothetical integration test suite which relies on a local MySQL database to be running.
Using the withRun method, implemented in the plugin:docker-workflow[Docker Pipeline] plugin’s

64

https://www.youtube.com/watch?v=Pi2kJ2RJS50
../../glossary/#agent
../../glossary/#folder
../../glossary/#label
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar

support for Scripted Pipeline, a Jenkinsfile can run MySQL as a sidecar:

node {
 checkout scm
 /*
 * In order to communicate with the MySQL server, this Pipeline explicitly
 * maps the port (`3306`) to a known port on the host machine.
 */
 docker.image('mysql:5').withRun('-e "MYSQL_ROOT_PASSWORD=my-secret-pw" -p
3306:3306') { c ->
 /* Wait until mysql service is up */
 sh 'while ! mysqladmin ping -h0.0.0.0 --silent; do sleep 1; done'
 /* Run some tests which require MySQL */
 sh 'make check'
 }
}

This example can be taken further, utilizing two containers simultaneously. One "sidecar" running
MySQL, and another providing the execution environment, by using the Docker container links.

node {
 checkout scm
 docker.image('mysql:5').withRun('-e "MYSQL_ROOT_PASSWORD=my-secret-pw"') { c ->
 docker.image('mysql:5').inside("--link ${c.id}:db") {
 /* Wait until mysql service is up */
 sh 'while ! mysqladmin ping -hdb --silent; do sleep 1; done'
 }
 docker.image('centos:7').inside("--link ${c.id}:db") {
 /*
 * Run some tests which require MySQL, and assume that it is
 * available on the host name `db`
 */
 sh 'make check'
 }
 }
}

The above example uses the object exposed by withRun, which has the running container’s ID
available via the id property. Using the container’s ID, the Pipeline can create a link by passing
custom Docker arguments to the inside() method.

The id property can also be useful for inspecting logs from a running Docker container before the
Pipeline exits:

sh "docker logs ${c.id}"

65

https://docs.docker.com/engine/userguide/networking/default_network/dockerlinks/

Building containers

In order to create a Docker image, the plugin:docker-workflow[Docker Pipeline] plugin also
provides a build() method for creating a new image, from a Dockerfile in the repository, during a
Pipeline run.

One major benefit of using the syntax docker.build("my-image-name") is that a Scripted Pipeline can
use the return value for subsequent Docker Pipeline calls, for example:

node {
 checkout scm

 def customImage = docker.build("my-image:${env.BUILD_ID}")

 customImage.inside {
 sh 'make test'
 }
}

The return value can also be used to publish the Docker image to Docker Hub, or a custom Registry,
via the push() method, for example:

node {
 checkout scm
 def customImage = docker.build("my-image:${env.BUILD_ID}")
 customImage.push()
}

One common usage of image "tags" is to specify a latest tag for the most recently, validated, version
of a Docker image. The push() method accepts an optional tag parameter, allowing the Pipeline to
push the customImage with different tags, for example:

node {
 checkout scm
 def customImage = docker.build("my-image:${env.BUILD_ID}")
 customImage.push()

 customImage.push('latest')
}

The build() method builds the Dockerfile in the current directory by default. This can be
overridden by providing a directory path containing a Dockerfile as the second argument of the
build() method, for example:

66

https://hub.docker.com

node {
 checkout scm
 def testImage = docker.build("test-image", "./dockerfiles/test") ①

 testImage.inside {
 sh 'make test'
 }
}

① Builds test-image from the Dockerfile found at ./dockerfiles/test/Dockerfile.

It is possible to pass other arguments to docker build by adding them to the second argument of the
build() method. When passing arguments this way, the last value in the that string must be the path
to the docker file.

This example overrides the default Dockerfile by passing the -f flag:

node {
 checkout scm
 def dockerfile = 'Dockerfile.test'
 def customImage = docker.build("my-image:${env.BUILD_ID}", "-f ${dockerfile}
./dockerfiles") ①
}

① Builds my-image:${env.BUILD_ID} from the Dockerfile found at ./dockerfiles/Dockerfile.test.

Using a remote Docker server

By default, the plugin:docker-workflow[Docker Pipeline] plugin will communicate with a local
Docker daemon, typically accessed through /var/run/docker.sock.

To select a non-default Docker server, such as with Docker Swarm, the withServer() method should
be used.

By passing a URI, and optionally the Credentials ID of a Docker Server Certificate Authentication
pre-configured in Jenkins, to the method with:

node {
 checkout scm

 docker.withServer('tcp://swarm.example.com:2376', 'swarm-certs') {
 docker.image('mysql:5').withRun('-p 3306:3306') {
 /* do things */
 }
 }
}

67

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/swarm/

CAUTION

inside() and build() will not work properly with a Docker Swarm server out of
the box

For inside() to work, the Docker server and the Jenkins agent must use the
same filesystem, so that the workspace can be mounted.

Currently neither the Jenkins plugin nor the Docker CLI will automatically
detect the case that the server is running remotely; a typical symptom would be
errors from nested sh commands such as

cannot create /…@tmp/durable-…/pid: Directory nonexistent

When Jenkins detects that the agent is itself running inside a Docker container,
it will automatically pass the --volumes-from argument to the inside container,
ensuring that it can share a workspace with the agent.

Additionally some versions of Docker Swarm do not support custom Registries.

Using a custom registry

By default the plugin:docker-workflow[Docker Pipeline] integrates assumes the default Docker
Registry of Docker Hub.

In order to use a custom Docker Registry, users of Scripted Pipeline can wrap steps with the
withRegistry() method, passing in the custom Registry URL, for example:

node {
 checkout scm

 docker.withRegistry('https://registry.example.com') {

 docker.image('my-custom-image').inside {
 sh 'make test'
 }
 }
}

For a Docker Registry which requires authentication, add a "Username/Password" Credentials item
from the Jenkins home page and use the Credentials ID as a second argument to withRegistry():

68

https://hub.docker.com

node {
 checkout scm

 docker.withRegistry('https://registry.example.com', 'credentials-id') {

 def customImage = docker.build("my-image:${env.BUILD_ID}")

 /* Push the container to the custom Registry */
 customImage.push()
 }
}

69

Extending with Shared Libraries
As Pipeline is adopted for more and more projects in an organization, common patterns are likely
to emerge. Oftentimes it is useful to share parts of Pipelines between various projects to reduce
redundancies and keep code "DRY" [17: en.wikipedia.org/wiki/Don't_repeat_yourself].

Pipeline has support for creating "Shared Libraries" which can be defined in external source
control repositories and loaded into existing Pipelines.

Defining Shared Libraries
A Shared Library is defined with a name, a source code retrieval method such as by SCM, and
optionally a default version. The name should be a short identifier as it will be used in scripts.

The version could be anything understood by that SCM; for example, branches, tags, and commit
hashes all work for Git. You may also declare whether scripts need to explicitly request that library
(detailed below), or if it is present by default. Furthermore, if you specify a version in Jenkins
configuration, you can block scripts from selecting a different version.

The best way to specify the SCM is using an SCM plugin which has been specifically updated to
support a new API for checking out an arbitrary named version (Modern SCM option). As of this
writing, the latest versions of the Git and Subversion plugins support this mode; others should
follow.

If your SCM plugin has not been integrated, you may select Legacy SCM and pick anything offered.
In this case, you need to include ${library.yourLibName.version} somewhere in the configuration of
the SCM, so that during checkout the plugin will expand this variable to select the desired version.
For example, for Subversion, you can set the Repository URL to svnserver/project/

${library.yourLibName.version} and then use versions such as trunk or branches/dev or tags/1.0.

Directory structure

The directory structure of a Shared Library repository is as follows:

(root)
+- src # Groovy source files
| +- org
| +- foo
| +- Bar.groovy # for org.foo.Bar class
+- vars
| +- foo.groovy # for global 'foo' variable
| +- foo.txt # help for 'foo' variable
+- resources # resource files (external libraries only)
| +- org
| +- foo
| +- bar.json # static helper data for org.foo.Bar

The src directory should look like standard Java source directory structure. This directory is added

70

http://en.wikipedia.org/wiki/Don't_repeat_yourself
https://svnserver/project/${library.yourLibName.version}
https://svnserver/project/${library.yourLibName.version}
https://svnserver/project/${library.yourLibName.version}
https://svnserver/project/${library.yourLibName.version}
https://svnserver/project/${library.yourLibName.version}

to the classpath when executing Pipelines.

The vars directory hosts scripts that define global variables accessible from Pipeline. The basename
of each .groovy file should be a Groovy (~ Java) identifier, conventionally camelCased. The
matching .txt, if present, can contain documentation, processed through the system’s configured
markup formatter (so may really be HTML, Markdown, etc., though the txt extension is required).

The Groovy source files in these directories get the same “CPS transformation” as in Scripted
Pipeline.

A resources directory allows the libraryResource step to be used from an external library to load
associated non-Groovy files. Currently this feature is not supported for internal libraries.

Other directories under the root are reserved for future enhancements.

Global Shared Libraries

There are several places where Shared Libraries can be defined, depending on the use-case.
Manage Jenkins » Configure System » Global Pipeline Libraries as many libraries as necessary can be
configured.

Since these libraries will be globally usable, any Pipeline in the system can utilize functionality
implemented in these libraries.

These libraries are considered "trusted:" they can run any methods in Java, Groovy, Jenkins internal
APIs, Jenkins plugins, or third-party libraries. This allows you to define libraries which encapsulate
individually unsafe APIs in a higher-level wrapper safe for use from any Pipeline. Beware that
anyone able to push commits to this SCM repository could obtain unlimited access to Jenkins.
You need the Overall/RunScripts permission to configure these libraries (normally this will be
granted to Jenkins administrators).

Folder-level Shared Libraries

Any Folder created can have Shared Libraries associated with it. This mechanism allows scoping of
specific libraries to all the Pipelines inside of the folder or subfolder.

Folder-based libraries are not considered "trusted:" they run in the Groovy sandbox just like typical
Pipelines.

Automatic Shared Libraries

Other plugins may add ways of defining libraries on the fly. For example, the plugin:github-branch-
source[GitHub Branch Source] plugin provides a "GitHub Organization Folder" item which allows a
script to use an untrusted library such as github.com/someorg/somerepo without any additional

71

configuration. In this case, the specified GitHub repository would be loaded, from the master
branch, using an anonymous checkout.

Using libraries
Shared Libraries marked Load implicitly allows Pipelines to immediately use classes or global
variables defined by any such libraries. To access other shared libraries, the Jenkinsfile needs to
use the @Library annotation, specifying the library’s name:

@Library('my-shared-library') _
/* Using a version specifier, such as branch, tag, etc */
@Library('my-shared-library@1.0') _
/* Accessing multiple libraries with one statement */
@Library(['my-shared-library', 'otherlib@abc1234']) _

The annotation can be anywhere in the script where an annotation is permitted by Groovy. When
referring to class libraries (with src/ directories), conventionally the annotation goes on an import
statement:

@Library('somelib')
import com.mycorp.pipeline.somelib.UsefulClass

TIP

For Shared Libraries which only define Global Variables (vars/), or a Jenkinsfile
which only needs a Global Variable, the annotation pattern @Library('my-shared-
library') _ may be useful for keeping code concise. In essence, instead of annotating
an unnecessary import statement, the symbol _ is annotated.

It is not recommended to import a global variable/function, since this will force the
compiler to interpret fields and methods as static even if they were intended to be
instance. The Groovy compiler in this case can produce confusing error messages.

Libraries are resolved and loaded during compilation of the script, before it starts executing. This

72

http://groovy-lang.org/objectorientation.html#_annotation

allows the Groovy compiler to understand the meaning of symbols used in static type checking, and
permits them to be used in type declarations in the script, for example:

@Library('somelib')
import com.mycorp.pipeline.somelib.Helper

int useSomeLib(Helper helper) {
 helper.prepare()
 return helper.count()
}

echo useSomeLib(new Helper('some text'))

Global Variables however, are resolved at runtime.

Loading libraries dynamically

As of version 2.7 of the Pipeline: Shared Groovy Libraries plugin, there is a new option for loading
(non-implicit) libraries in a script: a library step that loads a library dynamically, at any time during
the build.

If you are only interested in using global variables/functions (from the vars/ directory), the syntax
is quite simple:

library 'my-shared-library'

Thereafter, any global variables from that library will be accessible to the script.

Using classes from the src/ directory is also possible, but trickier. Whereas the @Library annotation
prepares the “classpath” of the script prior to compilation, by the time a library step is encountered
the script has already been compiled. Therefore you cannot import or otherwise “statically” refer to
types from the library.

However you may use library classes dynamically (without type checking), accessing them by fully-
qualified name from the return value of the library step. static methods can be invoked using a
Java-like syntax:

library('my-shared-library').com.mycorp.pipeline.Utils.someStaticMethod()

You can also access static fields, and call constructors as if they were static methods named new:

73

def useSomeLib(helper) { // dynamic: cannot declare as Helper
 helper.prepare()
 return helper.count()
}

def lib = library('my-shared-library').com.mycorp.pipeline // preselect the package

echo useSomeLib(lib.Helper.new(lib.Constants.SOME_TEXT))

Library versions

The "Default version" for a configured Shared Library is used when "Load implicitly" is checked, or
if a Pipeline references the library only by name, for example @Library('my-shared-library') _. If a
"Default version" is not defined, the Pipeline must specify a version, for example @Library('my-
shared-library@master') _.

If "Allow default version to be overridden" is enabled in the Shared Library’s configuration, a
@Library annotation may also override a default version defined for the library. This also allows a
library with "Load implicitly" to be loaded from a different version if necessary.

When using the library step you may also specify a version:

library 'my-shared-library@master'

Since this is a regular step, that version could be computed rather than a constant as with the
annotation; for example:

library "my-shared-library@$BRANCH_NAME"

would load a library using the same SCM branch as the multibranch Jenkinsfile. As another
example, you could pick a library by parameter:

properties([parameters([string(name: 'LIB_VERSION', defaultValue: 'master')])])
library "my-shared-library@${params.LIB_VERSION}"

Note that the library step may not be used to override the version of an implicitly loaded library. It
is already loaded by the time the script starts, and a library of a given name may not be loaded
twice.

Retrieval Method

The best way to specify the SCM is using an SCM plugin which has been specifically updated to
support a new API for checking out an arbitrary named version (Modern SCM option). As of this
writing, the latest versions of the Git and Subversion plugins support this mode.

74

Legacy SCM

SCM plugins which have not yet been updated to support the newer features required by Shared
Libraries, may still be used via the Legacy SCM option. In this case, include
${library.yourlibrarynamehere.version} wherever a branch/tag/ref may be configured for that
particular SCM plugin. This ensures that during checkout of the library’s source code, the SCM
plugin will expand this variable to checkout the appropriate version of the library.

75

Dynamic retrieval

If you only specify a library name (optionally with version after @) in the library step, Jenkins will
look for a preconfigured library of that name. (Or in the case of a github.com/owner/repo automatic
library it will load that.)

But you may also specify the retrieval method dynamically, in which case there is no need for the
library to have been predefined in Jenkins. Here is an example:

library identifier: 'custom-lib@master', retriever: modernSCM(
 [$class: 'GitSCMSource',
 remote: 'git@git.mycorp.com:my-jenkins-utils.git',
 credentialsId: 'my-private-key'])

It is best to refer to Pipeline Syntax for the precise syntax for your SCM.

Note that the library version must be specified in these cases.

Writing libraries
At the base level, any valid Groovy code is okay for use. Different data structures, utility methods,
etc, such as:

76

http://groovy-lang.org/syntax.html

// src/org/foo/Point.groovy
package org.foo

// point in 3D space
class Point {
 float x,y,z
}

Accessing steps

Library classes cannot directly call steps such as sh or git. They can however implement methods,
outside of the scope of an enclosing class, which in turn invoke Pipeline steps, for example:

// src/org/foo/Zot.groovy
package org.foo

def checkOutFrom(repo) {
 git url: "git@github.com:jenkinsci/${repo}"
}

return this

Which can then be called from a Scripted Pipeline:

def z = new org.foo.Zot()
z.checkOutFrom(repo)

This approach has limitations; for example, it prevents the declaration of a superclass.

Alternately, a set of steps can be passed explicitly using this to a library class, in a constructor, or
just one method:

package org.foo
class Utilities implements Serializable {
 def steps
 Utilities(steps) {this.steps = steps}
 def mvn(args) {
 steps.sh "${steps.tool 'Maven'}/bin/mvn -o ${args}"
 }
}

When saving state on classes, such as above, the class must implement the Serializable interface.
This ensures that a Pipeline using the class, as seen in the example below, can properly suspend
and resume in Jenkins.

77

@Library('utils') import org.foo.Utilities
def utils = new Utilities(this)
node {
 utils.mvn 'clean package'
}

If the library needs to access global variables, such as env, those should be explicitly passed into the
library classes, or methods, in a similar manner.

Instead of passing numerous variables from the Scripted Pipeline into a library,

package org.foo
class Utilities {
 static def mvn(script, args) {
 script.sh "${script.tool 'Maven'}/bin/mvn -s ${script.env.HOME}/jenkins.xml -o
${args}"
 }
}

The above example shows the script being passed in to one static method, invoked from a Scripted
Pipeline as follows:

@Library('utils') import static org.foo.Utilities.*
node {
 mvn this, 'clean package'
}

Defining global variables

Internally, scripts in the vars directory are instantiated on-demand as singletons. This allows
multiple methods to be defined in a single .groovy file for convenience. For example:

vars/log.groovy

def info(message) {
 echo "INFO: ${message}"
}

def warning(message) {
 echo "WARNING: ${message}"
}

78

Jenkinsfile

@Library('utils') _

log.info 'Starting'
log.warning 'Nothing to do!'

Declarative Pipeline does not allow global variable usage outside of a script directive (JENKINS-
42360).

Jenkinsfile

@Library('utils') _

pipeline {
 agent none
 stage ('Example') {
 steps {
 script { ①
 log.info 'Starting'
 log.warning 'Nothing to do!'
 }
 }
 }
}

① script directive required to access global variables in Declarative Pipeline.

NOTE
A variable defined in a shared library will only show up in Global Variables
Reference (under Pipeline Syntax) after Jenkins loads and uses that library as part of
a successful Pipeline run.

WARNING

Avoid preserving state in global variables

Avoid defining global variables with methods that interact or preserve state.
Use a static class or instantiate a local variable of a class instead.

Defining custom steps

Shared Libraries can also define global variables which behave similarly to built-in steps, such as sh
or git. Global variables defined in Shared Libraries must be named with all lower-case or
"camelCased" in order to be loaded properly by Pipeline. [18: gist.github.com/rtyler/
e5e57f075af381fce4ed3ae57aa1f0c2]

For example, to define sayHello, the file vars/sayHello.groovy should be created and should
implement a call method. The call method allows the global variable to be invoked in a manner
similar to a step:

79

https://issues.jenkins-ci.org/browse/JENKINS-42360
https://issues.jenkins-ci.org/browse/JENKINS-42360
https://gist.github.com/rtyler/e5e57f075af381fce4ed3ae57aa1f0c2
https://gist.github.com/rtyler/e5e57f075af381fce4ed3ae57aa1f0c2

// vars/sayHello.groovy
def call(String name = 'human') {
 // Any valid steps can be called from this code, just like in other
 // Scripted Pipeline
 echo "Hello, ${name}."
}

The Pipeline would then be able to reference and invoke this variable:

sayHello 'Joe'
sayHello() /* invoke with default arguments */

If called with a block, the call method will receive a Closure. The type should be defined explicitly
to clarify the intent of the step, for example:

// vars/windows.groovy
def call(Closure body) {
 node('windows') {
 body()
 }
}

The Pipeline can then use this variable like any built-in step which accepts a block:

windows {
 bat "cmd /?"
}

Defining a more structured DSL

If you have a lot of Pipelines that are mostly similar, the global variable mechanism provides a
handy tool to build a higher-level DSL that captures the similarity. For example, all Jenkins plugins
are built and tested in the same way, so we might write a step named buildPlugin:

// vars/buildPlugin.groovy
def call(Map config) {
 node {
 git url: "https://github.com/jenkinsci/${config.name}-plugin.git"
 sh 'mvn install'
 mail to: '...', subject: "${config.name} plugin build", body: '...'
 }
}

Assuming the script has either been loaded as a Global Shared Library or as a Folder-level Shared

80

http://groovy-lang.org/closures.html

Library the resulting Jenkinsfile will be dramatically simpler:

// Script //
buildPlugin name: 'git'
// Declarative not yet implemented //

There is also a “builder pattern” trick using Groovy’s Closure.DELEGATE_FIRST, which permits
Jenkinsfile to look slightly more like a configuration file than a program, but this is more complex
and error-prone and is not recommended.

Using third-party libraries

It is possible to use third-party Java libraries, typically found in Maven Central, from trusted
library code using the @Grab annotation. Refer to the Grape documentation for details, but simply
put:

@Grab('org.apache.commons:commons-math3:3.4.1')
import org.apache.commons.math3.primes.Primes
void parallelize(int count) {
 if (!Primes.isPrime(count)) {
 error "${count} was not prime"
 }
 // …
}

Third-party libraries are cached by default in ~/.groovy/grapes/ on the Jenkins master.

Loading resources

External libraries may load adjunct files from a resources/ directory using the libraryResource step.
The argument is a relative pathname, akin to Java resource loading:

def request = libraryResource 'com/mycorp/pipeline/somelib/request.json'

The file is loaded as a string, suitable for passing to certain APIs or saving to a workspace using
writeFile.

It is advisable to use an unique package structure so you do not accidentally conflict with another
library.

Pretesting library changes

If you notice a mistake in a build using an untrusted library, simply click the Replay link to try
editing one or more of its source files, and see if the resulting build behaves as expected. Once you
are satisfied with the result, follow the diff link from the build’s status page, and apply the diff to
the library repository and commit.

81

http://search.maven.org/
http://docs.groovy-lang.org/latest/html/documentation/grape.html#_quick_start

(Even if the version requested for the library was a branch, rather than a fixed version like a tag,
replayed builds will use the exact same revision as the original build: library sources will not be
checked out again.)

Replay is not currently supported for trusted libraries. Modifying resource files is also not currently
supported during Replay.

Defining Declarative Pipelines

Starting with Declarative 1.2, released in late September, 2017, you can define Declarative Pipelines
in your shared libraries as well. Here’s an example, which will execute a different Declarative
Pipeline depending on whether the build number is odd or even:

// vars/evenOrOdd.groovy
def call(int buildNumber) {
 if (buildNumber % 2 == 0) {
 pipeline {
 agent any
 stages {
 stage('Even Stage') {
 steps {
 echo "The build number is even"
 }
 }
 }
 }
 } else {
 pipeline {
 agent any
 stages {
 stage('Odd Stage') {
 steps {
 echo "The build number is odd"
 }
 }
 }
 }
 }
}

// Jenkinsfile
@Library('my-shared-library') _

evenOrOdd(currentBuild.getNumber())

Only entire pipeline`s can be defined in shared libraries as of this time. This can only be
done in `vars/*.groovy, and only in a call method. Only one Declarative Pipeline can be executed
in a single build, and if you attempt to execute a second one, your build will fail as a result.

82

Pipeline Development Tools
Jenkins Pipeline includes built-in documentation and the Snippet Generator which are key
resources when developing Pipelines. They provide detailed help and information that is
customized to the currently installed version of Jenkins and related plugins. In this section, we’ll
discuss other tools and resources that may help with development of Jenkins Pipelines.

Blue Ocean Editor
The Blue Ocean Pipeline Editor provides a WYSIWYG way to create Declarative Pipelines. The editor
offers a structural view of all the stages, parallel branches, and steps in a Pipeline. The editor
validates Pipeline changes as they are made, eliminating many errors before they are even
committed. Behind the scenes it still generates Declarative Pipeline code.

Command-line Pipeline Linter
Jenkins can validate, or "lint", a Declarative Pipeline from the command line before actually
running it. This can be done using a Jenkins CLI command or by making an HTTP POST request
with appropriate parameters. We recommended using the SSH interface to run the linter. See the
Jenkins CLI documentation for details on how to properly configure Jenkins for secure command-
line access.

Linting via the CLI with SSH

ssh (Jenkins CLI)
JENKINS_SSHD_PORT=[sshd port on master]
JENKINS_HOSTNAME=[Jenkins master hostname]
ssh -p $JENKINS_SSHD_PORT $JENKINS_HOSTNAME declarative-linter < Jenkinsfile

Linting via HTTP POST using curl

curl (REST API)
Assuming "anonymous read access" has been enabled on your Jenkins instance.
JENKINS_URL=[root URL of Jenkins master]
JENKINS_CRUMB is needed if your Jenkins master has CRSF protection enabled as it
should
JENKINS_CRUMB=`curl
"$JENKINS_URL/crumbIssuer/api/xml?xpath=concat(//crumbRequestField,\":\",//crumb)"`
curl -X POST -H $JENKINS_CRUMB -F "jenkinsfile=<Jenkinsfile" $JENKINS_URL/pipeline-
model-converter/validate

Examples

Below are two examples of the Pipeline Linter in action. This first example shows the output of the
linter when it is passed an invalid Jenkinsfile, one that is missing part of the agent declaration.

83

getting-started.pdf#built-in-documentation
getting-started.pdf#snippet-generator
../blueocean/pipeline-editor.pdf
https://en.wikipedia.org/wiki/WYSIWYG
https://en.wikipedia.org/wiki/Lint_(software)
../managing/cli.pdf#ssh
../managing/cli.pdf

Jenkinsfile

pipeline {
 agent
 stages {
 stage ('Initialize') {
 steps {
 echo 'Placeholder.'
 }
 }
 }
}

Linter output for invalid Jenkinsfile

pass a Jenkinsfile that does not contain an "agent" section
ssh -p 8675 localhost declarative-linter < ./Jenkinsfile
Errors encountered validating Jenkinsfile:
WorkflowScript: 2: Not a valid section definition: "agent". Some extra configuration
is required. @ line 2, column 3.
 agent
 ^

WorkflowScript: 1: Missing required section "agent" @ line 1, column 1.
 pipeline }
 ^

In this second example, the Jenkinsfile has been updated to include the missing any on agent. The
linter now reports that the Pipeline is valid.

Jenkinsfile

pipeline {
 agent any
 stages {
 stage ('Initialize') {
 steps {
 echo 'Placeholder.'
 }
 }
 }
}

Linter output for valid Jenkinsfile

ssh -p 8675 localhost declarative-linter < ./Jenkinsfile
Jenkinsfile successfully validated.

84

"Replay" Pipeline Runs with Modifications
Typically a Pipeline will be defined inside of the classic Jenkins web UI, or by committing to a
Jenkinsfile in source control. Unfortunately, neither approach is ideal for rapid iteration, or
prototyping, of a Pipeline. The "Replay" feature allows for quick modifications and execution of an
existing Pipeline without changing the Pipeline configuration or creating a new commit.

Usage

To use the "Replay" feature:

1. Select a previously completed run in the build history.

2. Click "Replay" in the left menu

85

3. Make modifications and click "Run". In this example, we changed "ruby-2.3" to "ruby-2.4".

4. Check the results of changes

Once you are satisfied with the changes, you can use Replay to view them again, copy them back to
your Pipeline job or Jenkinsfile, and then commit them using your usual engineering processes.

Features

• Can be called multiple times on the same run - allows for easy parallel testing of different
changes.

• Can also be called on Pipeline runs that are still in-progress - As long as a Pipeline contained
syntactically correct Groovy and was able to start, it can be Replayed.

• Referenced Shared Library code is also modifiable - If a Pipeline run references a Shared
Library, the code from the shared library will also be shown and modifiable as part of the
Replay page.

Limitations

• Pipeline runs with syntax errors cannot be replayed - meaning their code cannot be viewed
and any changes made in them cannot be retrieved. When using Replay for more significant
modifications, save your changes to a file or editor outside of Jenkins before running them. See
JENKINS-37589

• Replayed Pipeline behavior may differ from runs started by other methods - For Pipelines
that are not part of a Multi-branch Pipeline, the commit information may differ for the original
run and the Replayed run. See JENKINS-36453

86

shared-libraries.pdf
shared-libraries.pdf
https://issues.jenkins-ci.org/browse/JENKINS-37589
https://issues.jenkins-ci.org/browse/JENKINS-36453

IDE Integrations

Eclipse Jenkins Editor

The Jenkins Editor Eclipse plugin can be found on Eclipse Marketplace. This special text editor
provides some features for defining pipelines e.g:

• Validate pipeline scripts by Jenkins Linter Validation. Failures are shown as eclipse markers

• An Outline with dedicated icons (for declarative Jenkins pipelines)

• Syntax / keyword highlighting

• Groovy validation

NOTE
The Jenkins Editor Plugin is a third-party tool that is not supported by the Jenkins
Project.

VisualStudio Code Jenkins Pipeline Linter Connector

The Jenkins Pipeline Linter Connector extension for VisualStudio Code takes the file that you have
currently opened, pushes it to your Jenkins Server and displays the validation result in VS Code.

You can find the extension from within the VS Code extension browser or at the following url:
marketplace.visualstudio.com/items?itemName=janjoerke.jenkins-pipeline-linter-connector

The extension adds four settings entries to VS Code which select the Jenkins server you want to use
for validation.

• jenkins.pipeline.linter.connector.url is the endpoint at which your Jenkins Server expects the
POST request, containing your Jenkinsfile which you want to validate. Typically this points to
<your_jenkins_server:port>/pipeline-model-converter/validate.

• jenkins.pipeline.linter.connector.user allows you to specify your Jenkins username.

• jenkins.pipeline.linter.connector.pass allows you to specify your Jenkins password.

• jenkins.pipeline.linter.connector.crumbUrl has to be specified if your Jenkins Server has CRSF
protection enabled. Typically this points to <your_jenkins_server:port>/crumbIssuer/api/xml?
xpath=concat(//crumbRequestField,%22:%22,//crumb).

Atom linter-jenkins package

The linter-jenkins Atom package allows you to validate a Jenkins file by using the Pipeline Linter
API of a running Jenkins. You can install it directly from the Atom package manager. It needs also to
install Jenkinsfile language support in Atom

Pipeline Unit Testing Framework

NOTE
The Pipeline Unit Testing Framework is a third-party tool that is not supported by
the Jenkins Project.

87

https://marketplace.eclipse.org/content/jenkins-editor
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=janjoerke.jenkins-pipeline-linter-connector
http://<your_jenkins_server:port>/pipeline-model-converter/validate
http://<your_jenkins_server:port>/crumbIssuer/api/xml?xpath=concat(//crumbRequestField,%22:%22,//crumb
http://<your_jenkins_server:port>/crumbIssuer/api/xml?xpath=concat(//crumbRequestField,%22:%22,//crumb
https://atom.io/packages/linter-jenkins
https://atom.io/packages/language-jenkinsfile

The Pipeline Unit Testing Framework allows you to unit test Pipelines and Shared Libraries before
running them in full. It provides a mock execution environment where real Pipeline steps are
replaced with mock objects that you can use to check for expected behavior. New and rough
around the edges, but promising. The README for that project contains examples and usage
instructions.

88

https://github.com/lesfurets/JenkinsPipelineUnit
https://en.wikipedia.org/wiki/Unit_testing
shared-libraries.pdf
https://github.com/lesfurets/JenkinsPipelineUnit/blob/master/README.md

Pipeline Syntax
This section builds on the information introduced in Getting started with Pipeline and should be
treated solely as a reference. For more information on how to use Pipeline syntax in practical
examples, refer to the Using a Jenkinsfile section of this chapter. As of version 2.5 of the Pipeline
plugin, Pipeline supports two discrete syntaxes which are detailed below. For the pros and cons of
each, see the Syntax Comparison.

As discussed at the start of this chapter, the most fundamental part of a Pipeline is the "step".
Basically, steps tell Jenkins what to do and serve as the basic building block for both Declarative and
Scripted Pipeline syntax.

For an overview of available steps, please refer to the Pipeline Steps reference which contains a
comprehensive list of steps built into Pipeline as well as steps provided by plugins.

Declarative Pipeline
Declarative Pipeline is a relatively recent addition to Jenkins Pipeline [19: Version 2.5 of the
"Pipeline plugin" introduces support for Declarative Pipeline syntax] which presents a more
simplified and opinionated syntax on top of the Pipeline sub-systems.

All valid Declarative Pipelines must be enclosed within a pipeline block, for example:

pipeline {
 /* insert Declarative Pipeline here */
}

The basic statements and expressions which are valid in Declarative Pipeline follow the same rules
as Groovy’s syntax with the following exceptions:

• The top-level of the Pipeline must be a block, specifically: pipeline { }

• No semicolons as statement separators. Each statement has to be on its own line

• Blocks must only consist of Sections, Directives, Steps, or assignment statements.

• A property reference statement is treated as no-argument method invocation. So for example,
input is treated as input()

You can use the Declarative Directive Generator to help you get started with configuring the
directives and sections in your Declarative Pipeline.

Sections

Sections in Declarative Pipeline typically contain one or more Directives or Steps.

agent

The agent section specifies where the entire Pipeline, or a specific stage, will execute in the Jenkins

89

../getting-started
../jenkinsfile
../
/doc/pipeline/steps
http://groovy-lang.org/syntax.html
../getting-started/#directive-generator

environment depending on where the agent section is placed. The section must be defined at the
top-level inside the pipeline block, but stage-level usage is optional.

Require
d

Yes

Parame
ters

Described below

Allowed In the top-level pipeline block and each stage block.

Parameters

In order to support the wide variety of use-cases Pipeline authors may have, the agent section
supports a few different types of parameters. These parameters can be applied at the top-level of
the pipeline block, or within each stage directive.

any

Execute the Pipeline, or stage, on any available agent. For example: agent any

none

When applied at the top-level of the pipeline block no global agent will be allocated for the
entire Pipeline run and each stage section will need to contain its own agent section. For
example: agent none

label

Execute the Pipeline, or stage, on an agent available in the Jenkins environment with the
provided label. For example: agent { label 'my-defined-label' }

node

agent { node { label 'labelName' } } behaves the same as agent { label 'labelName' }, but
node allows for additional options (such as customWorkspace).

docker

Execute the Pipeline, or stage, with the given container which will be dynamically provisioned
on a node pre-configured to accept Docker-based Pipelines, or on a node matching the optionally
defined label parameter. docker also optionally accepts an args parameter which may contain
arguments to pass directly to a docker run invocation, and an alwaysPull option, which will force
a docker pull even if the image name is already present. For example: agent { docker 'maven:3-
alpine' } or

agent {
 docker {
 image 'maven:3-alpine'
 label 'my-defined-label'
 args '-v /tmp:/tmp'
 }
}

90

../glossary.pdf#node

docker also optionally accepts a registryUrl and registryCredentialsId parameters which will
help to specify the Docker Registry to use and its credentials. For example:

agent {
 docker {
 image 'myregistry.com/node'
 label 'my-defined-label'
 registryUrl 'https://myregistry.com/'
 registryCredentialsId 'myPredefinedCredentialsInJenkins'
 }
}

dockerfile

Execute the Pipeline, or stage, with a container built from a Dockerfile contained in the source
repository. In order to use this option, the Jenkinsfile must be loaded from either a Multibranch
Pipeline, or a "Pipeline from SCM." Conventionally this is the Dockerfile in the root of the source
repository: agent { dockerfile true }. If building a Dockerfile in another directory, use the dir
option: agent { dockerfile { dir 'someSubDir' } }. If your Dockerfile has another name, you
can specify the file name with the filename option. You can pass additional arguments to the
docker build … command with the additionalBuildArgs option, like agent { dockerfile {

additionalBuildArgs '--build-arg foo=bar' } }. For example, a repository with the file
build/Dockerfile.build, expecting a build argument version:

agent {
 // Equivalent to "docker build -f Dockerfile.build --build-arg version=1.0.2
./build/
 dockerfile {
 filename 'Dockerfile.build'
 dir 'build'
 label 'my-defined-label'
 additionalBuildArgs '--build-arg version=1.0.2'
 args '-v /tmp:/tmp'
 }
}

dockerfile also optionally accepts a registryUrl and registryCredentialsId parameters which
will help to specify the Docker Registry to use and its credentials. For example:

91

agent {
 dockerfile {
 filename 'Dockerfile.build'
 dir 'build'
 label 'my-defined-label'
 registryUrl 'https://myregistry.com/'
 registryCredentialsId 'myPredefinedCredentialsInJenkins'
 }
}

Common Options

These are a few options that can be applied two or more agent implementations. They are not
required unless explicitly stated.

label

A string. The label on which to run the Pipeline or individual stage.

This option is valid for node, docker and dockerfile, and is required for node.

customWorkspace

A string. Run the Pipeline or individual stage this agent is applied to within this custom
workspace, rather than the default. It can be either a relative path, in which case the custom
workspace will be under the workspace root on the node, or an absolute path. For example:

agent {
 node {
 label 'my-defined-label'
 customWorkspace '/some/other/path'
 }
}

This option is valid for node, docker and dockerfile.

reuseNode

A boolean, false by default. If true, run the container on the node specified at the top-level of the
Pipeline, in the same workspace, rather than on a new node entirely.

This option is valid for docker and dockerfile, and only has an effect when used on an agent for
an individual stage.

args

A string. Runtime arguments to pass to docker run.

This option is valid for docker and dockerfile.

92

Example

// Declarative //
pipeline {
 agent { docker 'maven:3-alpine' } ①
 stages {
 stage('Example Build') {
 steps {
 sh 'mvn -B clean verify'
 }
 }
 }
}
// Script //

① Execute all the steps defined in this Pipeline within a newly created container of the given name
and tag (maven:3-alpine).

Stage-level agent section

// Declarative //
pipeline {
 agent none ①
 stages {
 stage('Example Build') {
 agent { docker 'maven:3-alpine' } ②
 steps {
 echo 'Hello, Maven'
 sh 'mvn --version'
 }
 }
 stage('Example Test') {
 agent { docker 'openjdk:8-jre' } ③
 steps {
 echo 'Hello, JDK'
 sh 'java -version'
 }
 }
 }
}
// Script //

① Defining agent none at the top-level of the Pipeline ensures that an Executor will not be assigned
unnecessarily. Using agent none also forces each stage section to contain its own agent section.

② Execute the steps in this stage in a newly created container using this image.

③ Execute the steps in this stage in a newly created container using a different image from the
previous stage.

93

../glossary.pdf#executor

post

The post section defines one or more additional steps that are run upon the completion of a
Pipeline’s or stage’s run (depending on the location of the post section within the Pipeline). post can
support any of of the following post-condition blocks: always, changed, fixed, regression, aborted,
failure, success, unstable, and cleanup. These condition blocks allow the execution of steps inside
each condition depending on the completion status of the Pipeline or stage. The condition blocks
are executed in the order shown below.

Require
d

No

Parame
ters

None

Allowed In the top-level pipeline block and each stage block.

Conditions

always

Run the steps in the post section regardless of the completion status of the Pipeline’s or stage’s
run.

changed

Only run the steps in post if the current Pipeline’s or stage’s run has a different completion
status from its previous run.

fixed

Only run the steps in post if the current Pipeline’s or stage’s run is successful and the previous
run failed or was unstable.

regression

Only run the steps in post if the current Pipeline’s or stage’s run’s status is failure, unstable, or
aborted and the previous run was successful.

aborted

Only run the steps in post if the current Pipeline’s or stage’s run has an "aborted" status, usually
due to the Pipeline being manually aborted. This is typically denoted by gray in the web UI.

failure

Only run the steps in post if the current Pipeline’s or stage’s run has a "failed" status, typically
denoted by red in the web UI. Note that if you manually set currentBuild.result = 'FAILURE' in a
stage and have a failure post condition on that stage, the failure will not fire for that stage.

success

Only run the steps in post if the current Pipeline’s or stage’s run has a "success" status, typically
denoted by blue or green in the web UI.

unstable

Only run the steps in post if the current Pipeline’s or stage’s run has an "unstable" status, usually
caused by test failures, code violations, etc. This is typically denoted by yellow in the web UI.

94

cleanup

Run the steps in this post condition after every other post condition has been evaluated,
regardless of the Pipeline or stage’s status.

Example

// Declarative //
pipeline {
 agent any
 stages {
 stage('Example') {
 steps {
 echo 'Hello World'
 }
 }
 }
 post { ①
 always { ②
 echo 'I will always say Hello again!'
 }
 }
}
// Script //

① Conventionally, the post section should be placed at the end of the Pipeline.

② Post-condition blocks contain steps the same as the [steps] section.

stages

Containing a sequence of one or more [stage] directives, the stages section is where the bulk of the
"work" described by a Pipeline will be located. At a minimum it is recommended that stages
contain at least one [stage] directive for each discrete part of the continuous delivery process, such
as Build, Test, and Deploy.

Require
d

Yes

Parame
ters

None

Allowed Only once, inside the pipeline block.

Example

95

// Declarative //
pipeline {
 agent any
 stages { ①
 stage('Example') {
 steps {
 echo 'Hello World'
 }
 }
 }
}
// Script //

① The stages section will typically follow the directives such as agent, options, etc.

steps

The steps section defines a series of one or more steps to be executed in a given stage directive.

Require
d

Yes

Parame
ters

None

Allowed Inside each stage block.

Example

// Declarative //
pipeline {
 agent any
 stages {
 stage('Example') {
 steps { ①
 echo 'Hello World'
 }
 }
 }
}
// Script //

① The steps section must contain one or more steps.

Directives

environment

The environment directive specifies a sequence of key-value pairs which will be defined as

96

environment variables for the all steps, or stage-specific steps, depending on where the environment
directive is located within the Pipeline.

This directive supports a special helper method credentials() which can be used to access pre-
defined Credentials by their identifier in the Jenkins environment. For Credentials which are of
type "Secret Text", the credentials() method will ensure that the environment variable specified
contains the Secret Text contents. For Credentials which are of type "Standard username and
password", the environment variable specified will be set to username:password and two additional
environment variables will be automatically be defined: MYVARNAME_USR and MYVARNAME_PSW

respectively.

Require
d

No

Parame
ters

None

Allowed Inside the pipeline block, or within stage directives.

Example

// Declarative //
pipeline {
 agent any
 environment { ①
 CC = 'clang'
 }
 stages {
 stage('Example') {
 environment { ②
 AN_ACCESS_KEY = credentials('my-prefined-secret-text') ③
 }
 steps {
 sh 'printenv'
 }
 }
 }
}
// Script //

① An environment directive used in the top-level pipeline block will apply to all steps within the
Pipeline.

② An environment directive defined within a stage will only apply the given environment variables
to steps within the stage.

③ The environment block has a helper method credentials() defined which can be used to access
pre-defined Credentials by their identifier in the Jenkins environment.

97

options

The options directive allows configuring Pipeline-specific options from within the Pipeline itself.
Pipeline provides a number of these options, such as buildDiscarder, but they may also be provided
by plugins, such as timestamps.

Require
d

No

Parame
ters

None

Allowed Only once, inside the pipeline block.

Available Options

buildDiscarder

Persist artifacts and console output for the specific number of recent Pipeline runs. For example:
options { buildDiscarder(logRotator(numToKeepStr: '1')) }

checkoutToSubdirectory

Perform the automatic source control checkout in a subdirectory of the workspace. For example:
options { checkoutToSubdirectory('foo') }

disableConcurrentBuilds

Disallow concurrent executions of the Pipeline. Can be useful for preventing simultaneous
accesses to shared resources, etc. For example: options { disableConcurrentBuilds() }

newContainerPerStage

Used with docker or dockerfile top-level agent. When specified, each stage will run in a new
container instance on the same node, rather than all stages running in the same container
instance.

overrideIndexTriggers

Allows overriding default treatment of branch indexing triggers. If branch indexing triggers are
disabled at the multibranch or organization label, options { overrideIndexTriggers(true) } will
enable them for this job only. Otherwise, options { overrideIndexTriggers(false) } will disable
branch indexing triggers for this job only.

preserveStashes

Preserve stashes from completed builds, for use with stage restarting. For example: options {
preserveStashes() } to preserve the stashes from the most recent completed build, or options {
preserveStashes(5) } to preserve the stashes from the five most recent completed builds.

quietPeriod

Set the quiet period, in seconds, for the Pipeline, overriding the global default. For example:
options { quietPeriod(30) }

retry

On failure, retry the entire Pipeline the specified number of times. For example: options {

98

retry(3) }

skipDefaultCheckout

Skip checking out code from source control by default in the agent directive. For example:
options { skipDefaultCheckout() }

skipStagesAfterUnstable

Skip stages once the build status has gone to UNSTABLE. For example: options {
skipStagesAfterUnstable() }

timeout

Set a timeout period for the Pipeline run, after which Jenkins should abort the Pipeline. For
example: options { timeout(time: 1, unit: 'HOURS') }

timestamps

Prepend all console output generated by the Pipeline run with the time at which the line was
emitted. For example: options { timestamps() }

parallelsAlwaysFailFast

Set failfast true for all subsequent parallel stages in the pipeline. For example: options {
parallelsAlwaysFailFast() }

Example

// Declarative //
pipeline {
 agent any
 options {
 timeout(time: 1, unit: 'HOURS') ①
 }
 stages {
 stage('Example') {
 steps {
 echo 'Hello World'
 }
 }
 }
}
// Script //

① Specifying a global execution timeout of one hour, after which Jenkins will abort the Pipeline
run.

NOTE A comprehensive list of available options is pending the completion of INFRA-1503.

stage options

The options directive for a stage is similar to the options directive at the root of the Pipeline.
However, the stage-level options can only contain steps like retry, timeout, or timestamps, or
Declarative options that are relevant to a stage, like skipDefaultCheckout.

99

https://issues.jenkins-ci.org/browse/INFRA-1053

Inside a stage, the steps in the options directive are invoked before entering the agent or checking
any when conditions.

Available Stage Options

skipDefaultCheckout

Skip checking out code from source control by default in the agent directive. For example:
options { skipDefaultCheckout() }

timeout

Set a timeout period for this stage, after which Jenkins should abort the stage. For example:
options { timeout(time: 1, unit: 'HOURS') }

retry

On failure, retry this stage the specified number of times. For example: options { retry(3) }

timestamps

Prepend all console output generated during this stage with the time at which the line was
emitted. For example: options { timestamps() }

Example

// Declarative //
pipeline {
 agent any
 stages {
 stage('Example') {
 options {
 timeout(time: 1, unit: 'HOURS') ①
 }
 steps {
 echo 'Hello World'
 }
 }
 }
}
// Script //

① Specifying a execution timeout of one hour for the Example stage, after which Jenkins will abort
the Pipeline run.

parameters

The parameters directive provides a list of parameters which a user should provide when triggering
the Pipeline. The values for these user-specified parameters are made available to Pipeline steps via
the params object, see the Example for its specific usage.

Require
d

No

100

Parame
ters

None

Allowed Only once, inside the pipeline block.

Available Parameters

string

A parameter of a string type, for example: parameters { string(name: 'DEPLOY_ENV',
defaultValue: 'staging', description: '') }

text

A text parameter, which can contain multiple lines, for example: parameters { text(name:
'DEPLOY_TEXT', defaultValue: 'One\nTwo\nThree\n', description: '') }

booleanParam

A boolean parameter, for example: parameters { booleanParam(name: 'DEBUG_BUILD',
defaultValue: true, description: '') }

choice

A choice parameter, for example: parameters { choice(name: 'CHOICES', choices: ['one',
'two', 'three'], description: '') }

file

A file parameter, which specifies a file to be submitted by the user when scheduling a build, for
example: parameters { file(name: 'FILE', description: 'Some file to upload') }

password

A password parameter, for example: parameters { password(name: 'PASSWORD', defaultValue:
'SECRET', description: 'A secret password') }

Example

101

// Declarative //
pipeline {
 agent any
 parameters {
 string(name: 'PERSON', defaultValue: 'Mr Jenkins', description: 'Who should I
say hello to?')

 text(name: 'BIOGRAPHY', defaultValue: '', description: 'Enter some information
about the person')

 booleanParam(name: 'TOGGLE', defaultValue: true, description: 'Toggle this
value')

 choice(name: 'CHOICE', choices: ['One', 'Two', 'Three'], description: 'Pick
something')

 password(name: 'PASSWORD', defaultValue: 'SECRET', description: 'Enter a
password')

 file(name: "FILE", description: "Choose a file to upload")
 }
 stages {
 stage('Example') {
 steps {
 echo "Hello ${params.PERSON}"

 echo "Biography: ${params.BIOGRAPHY}"

 echo "Toggle: ${params.TOGGLE}"

 echo "Choice: ${params.CHOICE}"

 echo "Password: ${params.PASSWORD}"
 }
 }
 }
}
// Script //

NOTE
A comprehensive list of available parameters is pending the completion of INFRA-
1503.

triggers

The triggers directive defines the automated ways in which the Pipeline should be re-triggered. For
Pipelines which are integrated with a source such as GitHub or BitBucket, triggers may not be
necessary as webhooks-based integration will likely already be present. The triggers currently
available are cron, pollSCM and upstream.

102

https://issues.jenkins-ci.org/browse/INFRA-1053
https://issues.jenkins-ci.org/browse/INFRA-1053

Require
d

No

Parame
ters

None

Allowed Only once, inside the pipeline block.

cron

Accepts a cron-style string to define a regular interval at which the Pipeline should be re-
triggered, for example: triggers { cron('H */4 * * 1-5') }

pollSCM

Accepts a cron-style string to define a regular interval at which Jenkins should check for new
source changes. If new changes exist, the Pipeline will be re-triggered. For example: triggers {
pollSCM('H */4 * * 1-5') }

upstream

Accepts a comma separated string of jobs and a threshold. When any job in the string finishes
with the minimum threshold, the Pipeline will be re-triggered. For example: triggers {
upstream(upstreamProjects: 'job1,job2', threshold: hudson.model.Result.SUCCESS) }

NOTE The pollSCM trigger is only available in Jenkins 2.22 or later.

Example

// Declarative //
pipeline {
 agent any
 triggers {
 cron('H */4 * * 1-5')
 }
 stages {
 stage('Example') {
 steps {
 echo 'Hello World'
 }
 }
 }
}
// Script //

Jenkins cron syntax

The Jenkins cron syntax follows the syntax of the cron utility (with minor differences). Specifically,
each line consists of 5 fields separated by TAB or whitespace:

103

https://en.wikipedia.org/wiki/Cron

MINUTE HOUR DOM MONTH DOW

Minutes within
the hour (0–59)

The hour of the
day (0–23)

The day of the
month (1–31)

The month (1–12) The day of the
week (0–7) where
0 and 7 are
Sunday.

To specify multiple values for one field, the following operators are available. In the order of
precedence,

• * specifies all valid values

• M-N specifies a range of values

• M-N/X or */X steps by intervals of X through the specified range or whole valid range

• A,B,…,Z enumerates multiple values

To allow periodically scheduled tasks to produce even load on the system, the symbol H (for “hash”)
should be used wherever possible. For example, using 0 0 * * * for a dozen daily jobs will cause a
large spike at midnight. In contrast, using H H * * * would still execute each job once a day, but not
all at the same time, better using limited resources.

The H symbol can be used with a range. For example, H H(0-7) * * * means some time between
12:00 AM (midnight) to 7:59 AM. You can also use step intervals with H, with or without ranges.

The H symbol can be thought of as a random value over a range, but it actually is a hash of the job
name, not a random function, so that the value remains stable for any given project.

Beware that for the day of month field, short cycles such as /3 or H/3 will not work consistently
near the end of most months, due to variable month lengths. For example, /3`j will run on the
1st, 4th, …31st days of a long month, then again the next day of the next month. Hashes are

always chosen in the 1-28 range, so `H/3 will produce a gap between runs of between 3 and 6
days at the end of a month. (Longer cycles will also have inconsistent lengths but the effect may be
relatively less noticeable.)

Empty lines and lines that start with # will be ignored as comments.

In addition, @yearly, @annually, @monthly, @weekly, @daily, @midnight, and @hourly are supported as
convenient aliases. These use the hash system for automatic balancing. For example, @hourly is the
same as H * * * * and could mean at any time during the hour. @midnight actually means some time
between 12:00 AM and 2:59 AM.

Table 1. Jenkins cron syntax examples

every fifteen minutes (perhaps at :07, :22, :37, :52)

triggers{ cron('H/15 * * * *') }

every ten minutes in the first half of every hour (three times, perhaps at :04, :14, :24)

triggers{ H(0-29)/10 * * * *) }

once every two hours at 45 minutes past the hour starting at 9:45 AM and finishing at 3:45 PM
every weekday.

triggers{ 45 9-16/2 * * 1-5) }

104

once in every two hours slot between 9 AM and 5 PM every weekday (perhaps at 10:38 AM, 12:38
PM, 2:38 PM, 4:38 PM)

triggers{ H H(9-16)/2 * * 1-5) }

once a day on the 1st and 15th of every month except December

triggers{ H H 1,15 1-11 *) }

stage

The stage directive goes in the stages section and should contain a [steps] section, an optional agent
section, or other stage-specific directives. Practically speaking, all of the real work done by a
Pipeline will be wrapped in one or more stage directives.

Require
d

At least one

Parame
ters

One mandatory parameter, a string for the name of the stage.

Allowed Inside the stages section.

Example

// Declarative //
pipeline {
 agent any
 stages {
 stage('Example') {
 steps {
 echo 'Hello World'
 }
 }
 }
}
// Script //

tools

A section defining tools to auto-install and put on the PATH. This is ignored if agent none is specified.

Require
d

No

Parame
ters

None

Allowed Inside the pipeline block or a stage block.

105

Supported Tools

maven

jdk

gradle

Example

// Declarative //
pipeline {
 agent any
 tools {
 maven 'apache-maven-3.0.1' ①
 }
 stages {
 stage('Example') {
 steps {
 sh 'mvn --version'
 }
 }
 }
}
// Script //

① The tool name must be pre-configured in Jenkins under Manage Jenkins → Global Tool
Configuration.

input

The input directive on a stage allows you to prompt for input, using the input step. The stage will
pause after any options have been applied, and before entering the stage`s `agent or evaluating its
when condition. If the input is approved, the stage will then continue. Any parameters provided as
part of the input submission will be available in the environment for the rest of the stage.

Configuration options

message

Required. This will be presented to the user when they go to submit the input.

id

An optional identifier for this input. Defaults to the stage name.

ok

Optional text for the "ok" button on the input form.

submitter

An optional comma-separated list of users or external group names who are allowed to submit
this input. Defaults to allowing any user.

106

https://jenkins.io/doc/pipeline/steps/pipeline-input-step/#input-wait-for-interactive-input
https://jenkins.io/doc/pipeline/steps/pipeline-input-step/#input-wait-for-interactive-input

submitterParameter

An optional name of an environment variable to set with the submitter name, if present.

parameters

An optional list of parameters to prompt the submitter to provide. See [parameters] for more
information.

Example

// Declarative //
pipeline {
 agent any
 stages {
 stage('Example') {
 input {
 message "Should we continue?"
 ok "Yes, we should."
 submitter "alice,bob"
 parameters {
 string(name: 'PERSON', defaultValue: 'Mr Jenkins', description:
'Who should I say hello to?')
 }
 }
 steps {
 echo "Hello, ${PERSON}, nice to meet you."
 }
 }
 }
}
// Script //

when

The when directive allows the Pipeline to determine whether the stage should be executed
depending on the given condition. The when directive must contain at least one condition. If the when
directive contains more than one condition, all the child conditions must return true for the stage
to execute. This is the same as if the child conditions were nested in an allOf condition (see the
examples below). If an anyOf condition is used, note that the condition skips remaining tests as soon
as the first "true" condition is found.

More complex conditional structures can be built using the nesting conditions: not, allOf, or anyOf.
Nesting conditions may be nested to any arbitrary depth.

Require
d

No

Parame
ters

None

107

Allowed Inside a stage directive

Built-in Conditions

branch

Execute the stage when the branch being built matches the branch pattern given, for example:
when { branch 'master' }. Note that this only works on a multibranch Pipeline.

buildingTag

Execute the stage when the build is building a tag. Example: when { buildingTag() }

changelog

Execute the stage if the build’s SCM changelog contains a given regular expression pattern, for
example: when { changelog '.*^\\[DEPENDENCY\\] .+$' }

changeset

Execute the stage if the build’s SCM changeset contains one or more files matching the given
string or glob. Example: when { changeset "**/*.js" }

By default the path matching will be case insensitive, this can be turned off with the
caseSensitive parameter, for example: when { changeset glob: "ReadMe.*", caseSensitive: true
}

changeRequest

Executes the stage if the current build is for a "change request" (a.k.a. Pull Request on GitHub
and Bitbucket, Merge Request on GitLab or Change in Gerrit etc.). When no parameters are
passed the stage runs on every change request, for example: when { changeRequest() }.

By adding a filter attribute with parameter to the change request, the stage can be made to run
only on matching change requests. Possible attributes are id, target, branch, fork, url, title,
author, authorDisplayName, and authorEmail. Each of these corresponds to a CHANGE_* environment
variable, for example: when { changeRequest target: 'master' }.

The optional parameter comparator may be added after an attribute to specify how any patterns
are evaluated for a match: EQUALS for a simple string comparison (the default), GLOB for an ANT
style path glob (same as for example changeset), or REGEXP for regular expression matching.
Example: when { changeRequest authorEmail: "[\\w_-.]+@example.com", comparator: 'REGEXP' }

environment

Execute the stage when the specified environment variable is set to the given value, for example:
when { environment name: 'DEPLOY_TO', value: 'production' }

equals

Execute the stage when the expected value is equal to the actual value, for example: when {
equals expected: 2, actual: currentBuild.number }

expression

Execute the stage when the specified Groovy expression evaluates to true, for example: when {

108

expression { return params.DEBUG_BUILD } } Note that when returning strings from your
expressions they must be converted to booleans or return null to evaluate to false. Simply
returning "0" or "false" will still evaluate to "true".

tag

Execute the stage if the TAG_NAME variable matches the given pattern. Example: when { tag

"release-*" }. If an empty pattern is provided the stage will execute if the TAG_NAME variable
exists (same as buildingTag()).

The optional parameter comparator may be added after an attribute to specify how any patterns
are evaluated for a match: EQUALS for a simple string comparison, GLOB (the default) for an ANT
style path glob (same as for example changeset), or REGEXP for regular expression matching. For
example: when { tag pattern: "release-\\d+", comparator: "REGEXP"}

not

Execute the stage when the nested condition is false. Must contain one condition. For example:
when { not { branch 'master' } }

allOf

Execute the stage when all of the nested conditions are true. Must contain at least one condition.
For example: when { allOf { branch 'master'; environment name: 'DEPLOY_TO', value:
'production' } }

anyOf

Execute the stage when at least one of the nested conditions is true. Must contain at least one
condition. For example: when { anyOf { branch 'master'; branch 'staging' } }

Evaluating when before entering the stage’s `agent

By default, the when condition for a stage will be evaluated after entering the agent for that stage, if
one is defined. However, this can be changed by specifying the beforeAgent option within the when
block. If beforeAgent is set to true, the when condition will be evaluated first, and the agent will only
be entered if the when condition evaluates to true.

Evaluating when before the input directive

By default, the when condition for a stage will be evaluated before the input, if one is defined.
However, this can be changed by specifying the beforeInput option within the when block. If
beforeInput is set to true, the when condition will be evaluated first, and the input will only be
entered if the when condition evaluates to true.

Examples

109

Single condition

// Declarative //
pipeline {
 agent any
 stages {
 stage('Example Build') {
 steps {
 echo 'Hello World'
 }
 }
 stage('Example Deploy') {
 when {
 branch 'production'
 }
 steps {
 echo 'Deploying'
 }
 }
 }
}
// Script //

Multiple condition

// Declarative //
pipeline {
 agent any
 stages {
 stage('Example Build') {
 steps {
 echo 'Hello World'
 }
 }
 stage('Example Deploy') {
 when {
 branch 'production'
 environment name: 'DEPLOY_TO', value: 'production'
 }
 steps {
 echo 'Deploying'
 }
 }
 }
}
// Script //

110

Nested condition (same behavior as previous example)

// Declarative //
pipeline {
 agent any
 stages {
 stage('Example Build') {
 steps {
 echo 'Hello World'
 }
 }
 stage('Example Deploy') {
 when {
 allOf {
 branch 'production'
 environment name: 'DEPLOY_TO', value: 'production'
 }
 }
 steps {
 echo 'Deploying'
 }
 }
 }
}
// Script //

111

Multiple condition and nested condition

// Declarative //
pipeline {
 agent any
 stages {
 stage('Example Build') {
 steps {
 echo 'Hello World'
 }
 }
 stage('Example Deploy') {
 when {
 branch 'production'
 anyOf {
 environment name: 'DEPLOY_TO', value: 'production'
 environment name: 'DEPLOY_TO', value: 'staging'
 }
 }
 steps {
 echo 'Deploying'
 }
 }
 }
}
// Script //

112

Expression condition and nested condition

// Declarative //
pipeline {
 agent any
 stages {
 stage('Example Build') {
 steps {
 echo 'Hello World'
 }
 }
 stage('Example Deploy') {
 when {
 expression { BRANCH_NAME ==~ /(production|staging)/ }
 anyOf {
 environment name: 'DEPLOY_TO', value: 'production'
 environment name: 'DEPLOY_TO', value: 'staging'
 }
 }
 steps {
 echo 'Deploying'
 }
 }
 }
}
// Script //

113

beforeAgent

// Declarative //
pipeline {
 agent none
 stages {
 stage('Example Build') {
 steps {
 echo 'Hello World'
 }
 }
 stage('Example Deploy') {
 agent {
 label "some-label"
 }
 when {
 beforeAgent true
 branch 'production'
 }
 steps {
 echo 'Deploying'
 }
 }
 }
}
// Script //

114

beforeInput

// Declarative //
pipeline {
 agent none
 stages {
 stage('Example Build') {
 steps {
 echo 'Hello World'
 }
 }
 stage('Example Deploy') {
 when {
 beforeInput true
 branch 'production'
 }
 input {
 message "Deploy to production?"
 id "simple-input"
 }
 steps {
 echo 'Deploying'
 }
 }
 }
}
// Script //

Sequential Stages

Stages in Declarative Pipeline may declare a list of nested stages to be run within them in
sequential order. Note that a stage must have one and only one of steps, parallel, or stages, the last
for sequential stages. The stages within stages in a stage cannot contain further parallel or stages
themselves, but they do allow use of all other functionality of a stage, including agent, tools, `when,
etc.

Example

115

// Declarative //
pipeline {
 agent none
 stages {
 stage('Non-Sequential Stage') {
 agent {
 label 'for-non-sequential'
 }
 steps {
 echo "On Non-Sequential Stage"
 }
 }
 stage('Sequential') {
 agent {
 label 'for-sequential'
 }
 environment {
 FOR_SEQUENTIAL = "some-value"
 }
 stages {
 stage('In Sequential 1') {
 steps {
 echo "In Sequential 1"
 }
 }
 stage('In Sequential 2') {
 steps {
 echo "In Sequential 2"
 }
 }
 }
 }
 }
}
// Script //

Parallel

Stages in Declarative Pipeline may declare a number of nested stages within a parallel block,
which will be executed in parallel. Note that a stage must have one and only one of steps, stages, or
parallel. The nested stages cannot contain further parallel stages themselves, but otherwise
behave the same as any other stage, including a list of sequential stages within stages. Any stage
containing parallel cannot contain agent or tools, since those are not relevant without steps.

In addition, you can force your parallel stages to all be aborted when one of them fails, by adding
failFast true to the stage containing the parallel. Another option for adding failfast is adding an
option to the pipeline definition: parallelsAlwaysFailFast()

116

Example

// Declarative //
pipeline {
 agent any
 stages {
 stage('Non-Parallel Stage') {
 steps {
 echo 'This stage will be executed first.'
 }
 }
 stage('Parallel Stage') {
 when {
 branch 'master'
 }
 failFast true
 parallel {
 stage('Branch A') {
 agent {
 label "for-branch-a"
 }
 steps {
 echo "On Branch A"
 }
 }
 stage('Branch B') {
 agent {
 label "for-branch-b"
 }
 steps {
 echo "On Branch B"
 }
 }
 stage('Branch C') {
 agent {
 label "for-branch-c"
 }
 stages {
 stage('Nested 1') {
 steps {
 echo "In stage Nested 1 within Branch C"
 }
 }
 stage('Nested 2') {
 steps {
 echo "In stage Nested 2 within Branch C"
 }
 }
 }
 }
 }

117

 }
 }
}

// Script //

parallelsAlwaysFailFast

// Declarative //
pipeline {
 agent any
 options {
 parallelsAlwaysFailFast()
 }
 stages {
 stage('Non-Parallel Stage') {
 steps {
 echo 'This stage will be executed first.'
 }
 }
 stage('Parallel Stage') {
 when {
 branch 'master'
 }
 parallel {
 stage('Branch A') {
 agent {
 label "for-branch-a"
 }
 steps {
 echo "On Branch A"
 }
 }
 stage('Branch B') {
 agent {
 label "for-branch-b"
 }
 steps {
 echo "On Branch B"
 }
 }
 stage('Branch C') {
 agent {
 label "for-branch-c"
 }
 stages {
 stage('Nested 1') {
 steps {
 echo "In stage Nested 1 within Branch C"
 }
 }

118

 stage('Nested 2') {
 steps {
 echo "In stage Nested 2 within Branch C"
 }
 }
 }
 }
 }
 }
 }
}// Script //

Steps

Declarative Pipelines may use all the available steps documented in the Pipeline Steps reference,
which contains a comprehensive list of steps, with the addition of the steps listed below which are
only supported in Declarative Pipeline.

script

The script step takes a block of [scripted-pipeline] and executes that in the Declarative Pipeline. For
most use-cases, the script step should be unnecessary in Declarative Pipelines, but it can provide a
useful "escape hatch." script blocks of non-trivial size and/or complexity should be moved into
Shared Libraries instead.

Example

// Declarative //
pipeline {
 agent any
 stages {
 stage('Example') {
 steps {
 echo 'Hello World'

 script {
 def browsers = ['chrome', 'firefox']
 for (int i = 0; i < browsers.size(); ++i) {
 echo "Testing the ${browsers[i]} browser"
 }
 }
 }
 }
 }
}
// Script //

119

/doc/pipeline/steps
shared-libraries.pdf

Scripted Pipeline
Scripted Pipeline, like [declarative-pipeline], is built on top of the underlying Pipeline sub-system.
Unlike Declarative, Scripted Pipeline is effectively a general purpose DSL [20: Domain-specific
language] built with Groovy. Most functionality provided by the Groovy language is made available
to users of Scripted Pipeline, which means it can be a very expressive and flexible tool with which
one can author continuous delivery pipelines.

Flow Control

Scripted Pipeline is serially executed from the top of a Jenkinsfile downwards, like most traditional
scripts in Groovy or other languages. Providing flow control therefore rests on Groovy expressions,
such as the if/else conditionals, for example:

// Scripted //
node {
 stage('Example') {
 if (env.BRANCH_NAME == 'master') {
 echo 'I only execute on the master branch'
 } else {
 echo 'I execute elsewhere'
 }
 }
}
// Declarative //

Another way Scripted Pipeline flow control can be managed is with Groovy’s exception handling
support. When Steps fail for whatever reason they throw an exception. Handling behaviors on-
error must make use of the try/catch/finally blocks in Groovy, for example:

// Scripted //
node {
 stage('Example') {
 try {
 sh 'exit 1'
 }
 catch (exc) {
 echo 'Something failed, I should sound the klaxons!'
 throw
 }
 }
}
// Declarative //

Steps

As discussed at the start of this chapter, the most fundamental part of a Pipeline is the "step".

120

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
http://groovy-lang.org/syntax.html
../

Fundamentally, steps tell Jenkins what to do and serve as the basic building block for both
Declarative and Scripted Pipeline syntax.

Scripted Pipeline does not introduce any steps which are specific to its syntax; Pipeline Steps
reference contains a comprehensive list of steps provided by Pipeline and plugins.

Differences from plain Groovy

In order to provide durability, which means that running Pipelines can survive a restart of the
Jenkins master, Scripted Pipeline must serialize data back to the master. Due to this design
requirement, some Groovy idioms such as collection.each { item → /* perform operation */ }

are not fully supported. See JENKINS-27421 and JENKINS-26481 for more information.

Syntax Comparison
When Jenkins Pipeline was first created, Groovy was selected as the foundation. Jenkins has long
shipped with an embedded Groovy engine to provide advanced scripting capabilities for admins
and users alike. Additionally, the implementors of Jenkins Pipeline found Groovy to be a solid
foundation upon which to build what is now referred to as the "Scripted Pipeline" DSL. [1: Domain-
specific language].

As it is a fully featured programming environment, Scripted Pipeline offers a tremendous amount
of flexibility and extensibility to Jenkins users. The Groovy learning-curve isn’t typically desirable
for all members of a given team, so Declarative Pipeline was created to offer a simpler and more
opinionated syntax for authoring Jenkins Pipeline.

Both are fundamentally the same Pipeline sub-system underneath. They are both durable
implementations of "Pipeline as code." They are both able to use steps built into Pipeline or
provided by plugins. Both are able to utilize Shared Libraries

Where they differ however is in syntax and flexibility. Declarative limits what is available to the
user with a more strict and pre-defined structure, making it an ideal choice for simpler continuous
delivery pipelines. Scripted provides very few limits, insofar that the only limits on structure and
syntax tend to be defined by Groovy itself, rather than any Pipeline-specific systems, making it an
ideal choice for power-users and those with more complex requirements. As the name implies,
Declarative Pipeline encourages a declarative programming model. [21: Declarative Programming]
Whereas Scripted Pipelines follow a more imperative programming model. [22: Imperative
Programming]

121

/doc/pipeline/steps
/doc/pipeline/steps
../glossary.pdf#master
https://issues.jenkins-ci.org/browse/JENKINS-27421
https://issues.jenkins-ci.org/browse/JENKINS-26481
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
shared-libraries.pdf
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Imperative_programming

Using Speed/Durability Settings To Reduce
Disk I/O Needs
One of the main bottlenecks in Pipeline is that it writes transient data to disk FREQUENTLY so that
running pipelines can handle an unexpected Jenkins restart or system crash. This durability is
useful for many users but its performance cost can be a problem.

Pipeline now includes features to let users improve performance by reducing how much data is
written to disk and how often it is written — at a small cost to durability. In some special cases,
users may not be able to resume or visualize running Pipelines if Jenkins shuts down suddenly
without getting a chance to write data.

Because these settings include a trade-off of speed vs. durability, they are initially opt-in. To enable
performance-optimized modes, users need to explicity set a Speed/Durability Setting for Pipelines. If
no explicit choice is made, pipelines currently default to the "maximum durability" setting and
write to disk as they have in the past. There are some I/O optimizations to this mode included in the
same plugin releases, but the benefits are much smaller.

How Do I Set Speed/Durability Settings?
There are 3 ways to configure the durability setting:

1. Globally, you can choose a global default durability setting under "Manage Jenkins" >
"Configure System", labelled "Pipeline Speed/Durability Settings". You can override these with
the more specific settings below.

2. Per pipeline job: at the top of the job configuration, labelled "Custom Pipeline Speed/Durability
Level" - this overrides the global setting. Or, use a "properties" step - the setting will apply to the
NEXT run after the step is executed (same result).

3. Per-branch for a multibranch project: configure a custom Branch Property Strategy (under
the SCM) and add a property for Custom Pipeline Speed/Durability Level. This overrides the
global setting. You can also use a "properties" step to override the setting, but remember that
you may have to run the step again to undo this.

Durability settings will take effect with the next applicable Pipeline run, not immediately. The
setting will be displayed in the log.

Will Higher-Performance Durability Settings Help Me?
• Yes, if your Jenkins instance uses NFS, magnetic storage, runs many Pipelines at once, or shows

high iowait.

• Yes, if you are running Pipelines with many steps (more than several hundred).

• Yes, if your Pipeline stores large files or complex data to variables in the script, keeps that
variable in scope for future use, and then runs steps. This sounds oddly specific but happens
more than you’d expect.

◦ For example: readFile step with a large XML/JSON file, or using configuration information

122

from parsing such a file with One of the Utility Steps.

◦ Another common pattern is a "summary" object containing data from many branches (logs,
results, or statistics). Often this is visible because you’ll be adding to it often via an
add/append or Map.put() operations.

◦ Large arrays of data or Maps of configuration information are another common example of
this situation.

• No, if your Pipelines spend almost all their time waiting for a few shell/batch scripts to finish.
This ISN’T a magic "go fast" button for everything!

• No, if Pipelines are writing massive amounts of data to logs (logging is unchanged).

• No, if you are not using Pipelines, or your system is loaded down by other factors.

• No, if you don’t enable higher-performance modes for pipelines.

What Am I Giving Up With This Durability Setting
"Trade-Off?"
Stability of Jenkins ITSELF is not changed regardless of this setting - it only applies to Pipelines.
The worst-case behavior for Pipelines reverts to something like Freestyle builds — running
Pipelines that cannot persist transient data may not be able to resume or be displayed in Blue
Ocean/Stage View/etc, but will show logs. This impacts only running Pipelines and only when
Jenkins is shut down abruptly and not gracefully before they get to complete.

A "graceful" shutdown is where Jenkins goes through a full shutdown process, such as visiting
http://[jenkins-server]/exit, or using normal service shutdown scripts (if Jenkins is healthy). Sending
a SIGTERM/SIGINT to Jenkins will trigger a graceful shutdown. Note that running Pipelines do not
need to complete (you do not need to use /safeExit to shut down).

A "dirty" shutdown is when Jenkins does not get to do normal shutdown processes. This can occur
if the process is forcibly terminated. The most common causes are using SIGKILL to terminate the
Jenkins process or killing the container/VM running Jenkins. Simply stopping or pausing the
container/VM will not cause this, as long as the Jenkins process is able to resume. A dirty shutdown
can also happen due to catastrophic operating system failures, including the Linux OOMKiller
attacking the Jenkins java process to free memory.

Atomic writes: All settings except "maximum durability" currently avoid atomic writes — what
this means is that if the operating system running Jenkins fails, data that is buffered for writing to
disk will not be flushed, it will be lost. This is quite rare, but can happen as a result of container or
virtualization operations that halt the operating system or disconnect storage. Usually this data is
flushed pretty quickly to disk, so the window for data loss is brief. On Linux this flush-to-disk can
be forced by running 'sync'. In some rare cases this can also result in a build that cannot be loaded.

Requirements To Use Durability Settings
• Jenkins LTS 2.73+ or higher (or a weekly 2.62+)

• For all the Pipeline plugins below, at least the specified minimum version must be installed

123

https://jenkins.io/doc/pipeline/steps/pipeline-utility-steps/#code-readjson-code-read-json-from-files-in-the-workspace

◦ Pipeline: API (workflow-api) v2.25

◦ Pipeline: Groovy (workflow-cps) v2.43

◦ Pipeline: Job (workflow-job) v2.17

◦ Pipeline: Supporting APIs (workflow-support) v2.17

◦ Pipeline: Multibranch (workflow-multibranch) v2.17 - optional, only needed to enable this
setting for multibranch pipelines.

• Restart the master to use the updated plugins - note: you need all of them to take advantage.

What Are The Durability Settings?
• Performance-optimized mode ("PERFORMANCE_OPTIMIZED") - Greatly reduces disk I/O. If

Pipelines do not finish AND Jenkins is not shut down gracefully, they may lose data and behave
like Freestyle projects — see details above.

• Maximum durability ("MAX_SURVIVABILITY") - behaves just like Pipeline did before, slowest
option. Use this for running your most critical Pipelines.

• Less durable, a bit faster ("SURVIVABLE_NONATOMIC") - Writes data with every step but avoids
atomic writes. This is faster than maximum durability mode, especially on networked
filesystems. It carries a small extra risk (details above under "What Am I Giving Up: Atomic
Writes").

Suggested Best Practices And Tips for Durability
Settings

• Use the "performance-optimized" mode for most pipelines and especially basic build-test
Pipelines or anything that can simply be run again if needed.

• Use either the "maximum durability" or "less durable" mode for pipelines when you need a
guaranteed record of their execution (auditing). These two modes record every step run. For
example, use one of these two modes when:

◦ you have a pipeline that modifies the state of critical infrastructure

◦ you do a production deployment

• Set a global default (see above) of "performance-optimized" for the Durability Setting, and then
where needed set "maximum durability" on specific Pipeline jobs or Multibranch Pipeline
branches ("master" or release branches).

• You can force a Pipeline to persist data by pausing it.

Other Scaling Suggestions
• Use @NonCPS-annotated functions for more complex work. This means more involved

processing, logic, and transformations. This lets you leverage additional Groovy & functional
features for more powerful, concise, and performant code.

◦ This still runs on masters so be aware of complexity of the work, but is much faster than

124

native Pipeline code because it doesn’t provide durability and uses a faster execution model.
Still, be mindful of the CPU cost and offload to executors when the cost becomes too high.

◦ @NonCPS functions can use a much broader subset of the Groovy language, such as iterators
and functional features, which makes them more terse and fast to write.

◦ @NonCPS functions should not use Pipeline steps internally, however you can store the
result of a Pipeline step to a variable and use it that as the input to a @NonCPS function.

▪ Gotcha: It’s not guaranteed that use of a step will generate an error (there is an open
RFE to implement that), but you should not rely on that behavior. You may see improper
handling of exceptions.

◦ While normal Pipeline is restricted to serializable local variables, @NonCPS functions can
use more complex, nonserializable types internally (for example regex matchers, etc).
Parameters and return types should still be Serializable, however.

▪ Gotcha: improper usages are not guaranteed to raise an error with normal Pipeline
(optimizations may mask the issue), but it is unsafe to rely on this behavior.

◦ General Gotcha: when using running @NonCPS functions, the actual error can sometimes
be swallowed by pipeline creating a confusing error message. Combat this by using a
try/catch block and potentially using an echo to plain text print the error message in the
catch

• Whenever possible, run Jenkins with fast SSD-backed storage and not hard drives. This
can make a huge difference.

• In general try to fit the tool to the job. Consider writing short Shell/Batch/Groovy/Python scripts
when running a complex process using a build agent. Good examples include processing data,
communicating interactively with REST APIs, and parsing/templating larger XML or JSON files.
The sh and bat steps are helpful to invoke these, especially with returnStdout: true to return the
output from this script and save it as a variable (Scripted Pipeline).

◦ The Pipeline DSL is not designed for arbitrary networking and computation tasks - it is
intended for CI/CD scripting.

• Use the latest versions of the Pipeline plugins and Script Security, if applicable. These include
regular performance improvements.

• Try to simplify Pipeline code by reducing the number of steps run and using simpler Groovy
code for Scripted Pipelines.

• Consolidate sequential steps of the same type if you can, for example by using one Shell step to
invoke a helper script rather than running many steps.

• Try to limit the amount of data written to logs by Pipelines. If you are writing several MB of log
data, such as from a build tool, consider instead writing this to an external file, compressing it,
and archiving it as a build artifact.

• When using Jenkins with more than 6 GB of heap use the suggested garbage collection tuning
options to minimize garbage collection pause times and overhead.

125

https://jenkins.io/blog/2016/11/21/gc-tuning/
https://jenkins.io/blog/2016/11/21/gc-tuning/

Blue Ocean
This chapter covers all aspects of Blue Ocean’s functionality, including how to:

• get started with Blue Ocean - covers how to set up Blue Ocean in Jenkins and access the Blue
Ocean interface,

• create a new Pipeline project,

• use Blue Ocean’s Dashboard,

• use the Activity view - where you can access lists of your current and previously completed
Pipeline/item runs, as well as your Pipeline project’s branches and any opened Pull Requests,

• use the Pipeline run details view - where you can access details (i.e. the console output) for a
particular Pipeline/item run, and

• use the Pipeline Editor to modify Pipelines as code, which are committed to source control.

This chapter is intended for Jenkins users of all skill levels, but beginners may need to refer to some
sections of the Pipeline chapter to understand some topics covered in this Blue Ocean chapter.

For an overview of content in the Jenkins User Handbook, see User Handbook overview.

What is Blue Ocean?
Blue Ocean rethinks the user experience of Jenkins. Designed from the ground up for Jenkins
Pipeline, but still compatible with freestyle jobs, Blue Ocean reduces clutter and increases clarity
for every member of the team. Blue Ocean’s main features include:

• Sophisticated visualizations of continuous delivery (CD) Pipelines, allowing for fast and
intuitive comprehension of your Pipeline’s status.

• Pipeline editor - makes creation of Pipelines approachable by guiding the user through an
intuitive and visual process to create a Pipeline.

• Personalization to suit the role-based needs of each member of the team.

• Pinpoint precision when intervention is needed and/or issues arise. Blue Ocean shows where
in the pipeline attention is needed, facilitating exception handling and increasing productivity.

• Native integration for branch and pull requests, enables maximum developer productivity
when collaborating on code with others in GitHub and Bitbucket.

To start using Blue Ocean, see Getting started with Blue Ocean.

Frequently asked questions

Why does Blue Ocean exist?

The world has moved on from developer tools that are purely functional to developer tools being
part of a "developer experience". That is to say, it is no longer about a single tool but the many tools
developers use throughout the day and how they work together to achieve a workflow that is

126

getting-started
creating-pipelines
dashboard
activity
activity#activity
activity#activity
activity#branches
activity#pull-requests
pipeline-run-details
pipeline-editor
pipeline.pdf
getting-started.pdf
../pipeline/
../pipeline/
getting-started/

beneficial for the developer - this is "developer experience".

Developer tools companies like Heroku, Atlassian and Github have raised the bar for what is
considered good developer experience, and developers are increasingly expecting exceptional
design. In recent years, developers have become more rapidly attracted to tools that are not only
functional but are designed to fit into their workflow seamlessly and are a joy to use. This shift
represents a higher standard of design and user experience. Jenkins needs to rise to meet this
higher standard.

Creating and visualising CD pipelines is something valuable for many Jenkins users and this is
demonstrated in the 5+ plugins that the Jenkins community has created to meet their needs. This
indicates a need to revisit how Jenkins currently expresses these concepts and consider delivery
pipelines as a central theme to the Jenkins user experience.

It is not just CD concepts but the tools that developers use every day – Github, Bitbucket, Slack,
HipChat, Puppet or Docker. It is about more than Jenkins – it is the developer workflow which
surrounds Jenkins that spans multiple tools.

New teams have little time to learn how to assemble their own Jenkins experience – they want to
improve their time to market by shipping better software faster. Assembling that ideal Jenkins
experience is something we can work together as a community of Jenkins users and contributors to
define. As time progresses, developers' expectations of good user experience changes and the
mission of Blue Ocean enables the Jenkins project to respond.

The Jenkins community has poured its sweat and tears into building the most technically capable
and extensible software automation tool in existence. Not doing anything to revolutionize the
Jenkins developer experience today is just inviting someone else – in closed source – to do it.

Where is the name from?

The name Blue Ocean comes from the book Blue Ocean Strategy where instead of looking at
strategic problems within a contested space, you look at problems in the larger uncontested space.
To put this more simply, consider this quote from ice hockey legend Wayne Gretzky: "skate to
where the puck is going to be, not where it has been".

Does Blue Ocean support freestyle jobs?

Blue Ocean aims to deliver a great experience around Pipeline and be compatible with any
freestyle jobs you already have configured on your Jenkins instance. However, you will not benefit
from any of the features built for Pipelines – for example, Pipeline visualization.

As Blue Ocean is designed to be extensible, it is possible for the Jenkins community to extend Blue
Ocean to support other job types in the future.

What does this mean for the Jenkins classic UI?

The intention is that as Blue Ocean matures, there will be fewer reasons for users to go back to the
existing "classic UI". Read more about the classic UI in Getting started with Pipeline.

For example, early versions of Blue Ocean are mainly targeted at Pipeline jobs. You might be able to

127

https://en.wikipedia.org/wiki/Blue_Ocean_Strategy
../pipeline/getting-started

see your existing non-pipeline jobs in Blue Ocean but it might not be possible to configure them
from the Blue Ocean UI for some time. This means users will have to jump back to the classic UI to
configure items/projects/jobs other than Pipeline ones.

There are likely going to be more examples of this, which is why the classic UI will remain
important in the long term.

What does this mean for my plugins?

Extensibility is a core feature of Jenkins. Therefore, being able to extend the Blue Ocean UI is
important. The
<ExtensionPoint name=..> can be used in the markup of Blue Ocean, leaving places for plugins to
contribute to the Blue Ocean UI - i.e. plugins can have their own Blue Ocean extension points, just
like they can in the Jenkins classic UI. So far, Blue Ocean itself is implemented using these extension
points.

Extensions are delivered by plugins as usual. However, plugin developers will need to include some
additional JavaScript to hook into Blue Ocean’s extension points and contribute to the Blue Ocean
user experience.

What technologies are currently in use?

Blue Ocean is built as a collection of Jenkins plugins itself. There is one key difference - Blue Ocean
provides both its own endpoint for HTTP requests and delivers up HTML/JavaScript via a different
path, without the existing Jenkins UI markup/scripts. React.js and ES6 are used to deliver the
JavaScript components of Blue Ocean. Inspired by this excellent open source project (read more
about this in the Building Plugins for React Apps blog post), an <ExtensionPoint> pattern was
established that allows extensions to come from any Jenkins plugin (only with JavaScript) and
should they fail to load, have their failures isolated.

Where can I find the source code?

The source code can be found on Github:

• Blue Ocean

• Jenkins Design Language

Join the community
There a few ways you can join the community:

1. Chat with the community and development team on Gitter chatchat on gitteron gitter

2. Request features or report bugs against the blueocean-plugin component in JIRA.

3. Subscribe and ask questions on the Jenkins Users mailing list.

4. Developer? We’ve labeled a few issues that are great for anyone wanting to get started
developing Blue Ocean. Don’t forget to drop by the Gitter chat and introduce yourself!

128

https://nylas.com/blog/react-plugins
http://github.com/jenkinsci/blueocean-plugin
http://github.com/jenkinsci/jenkins-design-language
https://gitter.im/jenkinsci/blueocean-plugin?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge
https://issues.jenkins-ci.org/
https://issues.jenkins-ci.org/
https://groups.google.com/forum/#!forum/jenkinsci-users
https://issues.jenkins-ci.org/issues/?filter=16142

Getting started with Blue Ocean
This section describes how to get started with Blue Ocean in Jenkins. It includes instructions for
setting up Blue Ocean on your Jenkins instance as well as how to access the Blue Ocean UI and
return to the Jenkins classic UI.

Installing Blue Ocean
Blue Ocean can be installed using the following methods:

• As a suite of plugins on an existing Jenkins instance, or

• As part of Jenkins in Docker.

On an existing Jenkins instance

When Jenkins is installed on most platforms, the plugin:blueocean[Blue Ocean plugin] and all its
other dependent plugins (which form the Blue Ocean "suite of plugins") are not installed by default.

To install the Blue Ocean suite of plugins on an existing Jenkins instance, your Jenkins instance
must be running Jenkins 2.7.x or later.

Plugins can be installed on a Jenkins instance by any Jenkins user who has the Administer
permission (set through Matrix-based security). Jenkins users with this permission can also
configure the permissions of other users on their system. Read more about this in the Authorization
section of Managing Security.

To install the Blue Ocean suite of plugins to your Jenkins instance:

1. If required, ensure you are logged in to Jenkins (as a user with the Administer permission).

2. From the Jenkins home page (i.e. the Dashboard of the Jenkins classic UI), click Manage Jenkins
on the left and then Manage Plugins in the center.

3. Click the Available tab and type blue ocean into the Filter text box, which filters the list of
plugins to those whose name and/or description contains the words "blue" and "ocean".

4. Select the Blue Ocean plugin’s check box near the top of the the Install column and then click
either the Download now and install after restart button (recommended) or the Install
without restart button at the the end of the page.
Notes:

◦ There is no need to select the check boxes of the other plugins in this filtered list because the
main Blue Ocean plugin has other plugin dependencies (constituting the Blue Ocean suite of
plugins) which will automatically be selected and installed when you click one of these
"Install" buttons.

129

#installing-blue-ocean
#accessing-blue-ocean
#switching-to-the-classic-ui
#on-an-existing-jenkins-instance
#as-part-of-jenkins-in-docker
../../managing/security/#authorization
../../managing/security

◦ If you chose the Install without restart button, you may need to restart Jenkins in order to
gain full Blue Ocean functionality.

Read more about how to install and manage plugins in the Managing Plugins page.

Blue Ocean requires no additional configuration after installation, and existing Pipelines projects
and other items such as freestyle projects will continue to work as usual.

Be aware, however, that the first time a Pipeline is created in Blue Ocean for a specific Git server
(i.e. GitHub, Bitbucket or an ordinary Git server), Blue Ocean prompts you for credentials to access
your repositories on the Git server in order to create Pipelines based on those repositories. This is
required since Blue Ocean can write Jenkinsfiles to your repositories.

As part of Jenkins in Docker

The Blue Ocean suite of plugins are also bundled with Jenkins as part of a Jenkins Docker image
(jenkinsci/blueocean), which is available from the Docker Hub repository.

Read more about running Jenkins and Blue Ocean this way in the Docker section of the Installing
Jenkins page.

Accessing Blue Ocean
Once a Jenkins environment has Blue Ocean installed, after logging in to the Jenkins classic UI, you
can access the Blue Ocean UI by clicking Open Blue Ocean on the left.

Alternatively, you can access Blue Ocean directly by appending /blue to the end of your Jenkins
server’s URL - e.g. http://jenkins-server-url/blue.

If your Jenkins instance:

• already has existing Pipeline projects or other items present, then the Blue Ocean Dashboard is
displayed.

• is new or has no Pipeline projects or other items configured, then Blue Ocean displays a
Welcome to Jenkins box with a Create a new Pipeline button you can use to begin creating a
new Pipeline project. Read more about this in Creating a Pipeline.

Navigation bar
The Blue Ocean UI has a navigation bar along the top of its interface, which allows you to access the
different views and other features of Blue Ocean.

Th navigation bar is divided into two sections - a common section along the top of most Blue Ocean
views and a contextual section below. The contextual section is specific to the current Blue Ocean

130

../../managing/plugins
../creating-pipelines
https://hub.docker.com/r/jenkinsci/blueocean/
https://hub.docker.com/
../../installing/#docker
../../installing
../../installing
../dashboard
../creating-pipelines

page you are viewing.

The navigation bar’s common section includes the following buttons:

• Jenkins logo - takes you to the Dashboard, or reloads this page if you are already viewing it.

• Pipelines - also takes you to the Dashboard, or does nothing if you are already viewing the
Dashboard. This button serves a different purpose when you are viewing a Pipeline run details
page.

• Administration - takes you to the Manage Jenkins page of the Jenkins classic UI.
Note: This button is not available if your Jenkins user does not have the Administer permission
(set through Matrix-based security). Read more about this in the Authorization section of
Managing Security.

• Go to classic icon - takes you back to the Jenkins classic UI. Read more about this in [switching-
to-the-classic-ui].

• Logout - Logs out your current Jenkins user and returns to the Jenkins login page.

Views that use the standard navigation bar will add another bar below it with options specific to
that view. Some views replace the common navigation bar with one specifically suited to that view.

Switching to the classic UI
Blue Ocean does not support some legacy or administrative features of Jenkins that are necessary
to some users.

If you need to leave the Blue Ocean user experience to access these features, click the Go to classic
icon at the top of common section of Blue Ocean’s navigation bar.

Clicking this button takes you to the equivalent page in the Jenkins classic UI, or the most relevant
classic UI page that parallels the current page in Blue Ocean.

131

../dashboard
../pipeline-run-details
../../managing
../../managing/security/#authorization
../../managing/security
#navigation-bar

Creating a Pipeline
Blue Ocean makes it easy to create a Pipeline project in Jenkins.

A Pipeline can be generated from an existing Jenkinsfile in source control, or you can use the Blue
Ocean Pipeline editor to create a new Pipeline for you (as a Jenkinsfile that will be committed to
source control).

Setting up your Pipeline project
To start setting up your Pipeline project in Blue Ocean, at the top-right of the Blue Ocean
Dashboard, click the New Pipeline button.

If your Jenkins instance is new or has no Pipeline projects or other items configured (and the
Dashboard is empty), Blue Ocean displays a Welcome to Jenkins message box on which you can
click the Create a new Pipeline button to start setting up your Pipeline project.

You now have a choice of creating your new Pipeline project from a:

• standard Git repository

• repository on GitHub or GitHub Enterprise

• repository on Bitbucket Cloud or Bitbucket Server

For a Git repository

To create your Pipeline project for a Git repository, click the Git button under Where do you store
your code?

In the Connect to a Git repository section, enter the URL for your Git repository in the Repository
URL field.

You now need to specify a local or a remote repository from which to build your Pipeline project.

Local repository

If your URL is a local directory path (e.g. beginning with a forward slash / such as /home/cloned-
git-repos/my-git-repo.git), you can proceed to click the Create Pipeline button.

Blue Ocean will then scan your local repository’s branches for a Jenkinsfile and will commence a
Pipeline run for each branch containing a Jenkinsfile. If Blue Ocean cannot find any Jenkinsfile,

132

../pipeline-editor
../pipeline-editor
../dashboard
../dashboard
#for-a-git-repository
#for-a-repository-on-github
#for-a-repository-on-bitbucket-cloud
#local-repository
#remote-repository

you will be prompted to begin creating one through the Pipeline editor.

Remote repository

Since the Pipeline editor saves edited Pipelines to Git repositories as Jenkinsfiles, Blue Ocean only
supports connections to remote Git repositories over the SSH protocol.

If your URL is for a remote Git repository, then as soon as you begin typing the URL, starting with
either:

• ssh:// - e.g. ssh://gituser@git-server-url/git-server-repos-group/my-git-repo.git
or

• user@host:path/to/git/repo.git - e.g. gituser@git-server-url:git-server-repos-group/my-git-

repo.git,

Blue Ocean automatically generates an SSH public/private key pair (or presents you with an
existing one) for your current/logged in Jenkins user. This credential is automatically registered in
Jenkins with the following details for this Jenkins user:

• Domain: blueocean-private-key-domain

• ID: jenkins-generated-ssh-key

• Name: <jenkins-username> (jenkins-generated-ssh-key)

You need to ensure that this SSH public/private key pair has been registered with your Git server
before continuing. If you have not already done this, follow these 2 steps. Otherwise, continue on.

1. Configure the SSH public key component of this key pair (which you can copy and paste from
the Blue Ocean interface) for the remote Git server’s user account (e.g. within the
authorized_keys file of the machine’s gituser/.ssh directory).
Note: This process allows your Jenkins user to access the repositories that your Git server’s user
account (e.g. gituser) has access to. Read more about this in Setting Up the Server of the Pro Git
documentation.

2. When done, return to the Blue Ocean interface.

Click the Create Pipeline button.

Blue Ocean will then scan your local repository’s branches for a Jenkinsfile and will commence a
Pipeline run for each branch containing a Jenkinsfile. If Blue Ocean cannot find any Jenkinsfile,
you will be prompted to begin creating one through the Pipeline editor.

For a repository on GitHub

To create your Pipeline project directly for a repository on GitHub, click the GitHub button under
Where do you store your code?

In the Connect to GitHub section, enter your GitHub access token into the Your GitHub access

133

pipeline-editor.pdf
#continuing-on
https://git-scm.com/book/en/v2/Git-on-the-Server-Setting-Up-the-Server
https://git-scm.com/book/en/v2/
https://git-scm.com/book/en/v2/
../pipeline-editor

token field.
If you previously configured Blue Ocean to connect to GitHub using a personal access token, Blue
Ocean takes you directly to the choosing your GitHub account/organization and repository steps
below.

If you do not have a GitHub access token, click the Create an access key here link to open GitHub
to the New personal access token page.

Create your access token

1. In the new tab, sign in to your GitHub account (if necessary) and on the GitHub New Personal
Access Token page, specify a brief Token description for your GitHub access token (e.g. Blue
Ocean).
Note: An access token is usually an alphanumeric string that respresents your GitHub account
along with permissions to access various GitHub features and areas through your GitHub
account. The new access token process (triggered through the Create an access key here link
above) has the appropriate permissions pre-selected, which Blue Ocean requires to access and
interact with your GitHub account.

2. Scroll down to the end of the page and click Generate token.

3. On the resulting Personal access tokens page, copy your newly generated access token.

4. Back in Blue Ocean, paste the access token into the Your GitHub access token field and click
Connect.
Your current/logged in Jenkins user now has access to your GitHub account (provided by your
access token), so you can now choose your GitHub account/organization and repository.
Jenkins registers this credential with the following details for this Jenkins user:

◦ Domain: blueocean-github-domain

◦ ID: github

◦ Name: <jenkins-username>/****** (GitHub Access Token)

Choose your GitHub account/organization and repository

At this point, Blue Ocean prompts you to choose your GitHub account or an organization you are a
member of, as well as the repository it contains from which to build your Pipeline project.

1. In the Which organization does the repository belong to? section, click either:

◦ Your GitHub account to create a Pipeline project for one of your own GitHub repositories or
one which you have forked from elsewhere on GitHub.

◦ An organization you are a member of to create a Pipeline project for a GitHub repository
located within this organization.

2. In the Choose a repository section, click the repository (within your GitHub account or
organization) from which to build your Pipeline project.
Tip: If your list of repositories is long, you can filter this list using the Search option.

134

#choose-your-github-account-organization-and-repository
#create-your-access-token
#choose-your-github-account-organization-and-repository

3. Click Create Pipeline.
Blue Ocean will then scan your local repository’s branches for a Jenkinsfile and will commence
a Pipeline run for each branch containing a Jenkinsfile. If Blue Ocean cannot find any
Jenkinsfile, you will be prompted to begin creating one through the Pipeline editor (by clicking
Create Pipeline again).
Note: Under the hood, a Pipeline project created through Blue Ocean is actually "multibranch
Pipeline". Therefore, Jenkins looks for the presence of at least one Jenkinsfile in any branch of
your repository.

For a repository on Bitbucket Cloud

To create your Pipeline project directly for a Git or Mercurial repository on Bitbucket Cloud, click
the Bitbucket Cloud button under Where do you store your code?

In the Connect to Bitbucket section, enter your Bitbucket email address and password into the
Username and Password fields, respectively. Note that:

• If you previously configured Blue Ocean to connect to Bitbucket with your email address and
password, Blue Ocean takes you directly to the choosing your Bitbucket account/team and
repository steps below.

• If you entered these credentials, Jenkins registers them with the following details for this
Jenkins user:

◦ Domain: blueocean-bitbucket-cloud-domain

◦ ID: bitbucket-cloud

◦ Name: <bitbucket-user@email.address>/****** (Bitbucket server credentials)

Click Connect and your current/logged in Jenkins user will now have access to your Bitbucket
account. You can now choose your Bitbucket account/team and repository.

Choose your Bitbucket account/team and repository

At this point, Blue Ocean prompts you to choose your Bitbucket account or a team you are a
member of, as well as the repository it contains from which to build your Pipeline project.

1. In the Which team does the repository belong to? section, click either:

◦ Your Bitbucket account to create a Pipeline project for one of your own Bitbucket
repositories or one which you have forked from elsewhere on Bitbucket.

◦ A team you are a member of to create a Pipeline project for a Bitbucket repository located

135

../pipeline-editor
#choose-your-bitbucket-account-team-and-repository
#choose-your-bitbucket-account-team-and-repository

within this team.

2. In the Choose a repository section, click the repository (within your Bitbucket account or team)
from which to build your Pipeline project.
Tip: If your list of repositories is long, you can filter this list using the Search option.

3. Click Create Pipeline.
Blue Ocean will then scan your local repository’s branches for a Jenkinsfile and will commence
a Pipeline run for each branch containing a Jenkinsfile. If Blue Ocean cannot find any
Jenkinsfile, you will be prompted to begin creating one through the Pipeline editor (by clicking
Create Pipeline again).
Note: Under the hood, a Pipeline project created through Blue Ocean is actually "multibranch
Pipeline". Therefore, Jenkins looks for the presence of at least one Jenkinsfile in any branch of
your repository.

136

../pipeline-editor

Dashboard
Blue Ocean’s "Dashboard" is the default view shown when you open Blue Ocean and shows an
overview of all Pipeline projects configured on a Jenkins instance.

The Dashboard consists of a blue navigation bar at the top, the Pipelines list, as well as the Favorites
list.

Navigation bar
The Dashboard includes the blue-colored navigation bar along the top of the interface.

This bar is divided into two sections - a common section along the top and a contextual section
below. The contextual section changes depending on the current Blue Ocean page you are viewing.

When viewing the Dashboard, the navigation bar’s contextual section includes the:

• Search pipelines field, to filter the Pipelines list to show items containing the text you enter
into this field.

• New Pipeline button, which begins the create a Pipeline process.

Pipelines list
The "Pipelines" list is the Dashboard’s default list and upon accessing Blue Ocean for the first time,
this is the only list shown on the Dashboard.

This list shows the overall state of each Pipeline configured on the Jenkins instance (which can also
include other Jenkins items). For a given item in this list, the following information is indicated:

• The item’s NAME,

• The item’s HEALTH,

• The numbers of BRANCHes and pull requests (PRs) of the Pipeline’s source control repository
which are passing or failing, and

• A star indicating whether or not the default/main branch of the item has been manually added
to your current Jenkins user’s [favorites-list].

Clicking on an item’s star will toggle between:

• Adding the default branch of the item’s repository to your current user’s Favorites list
(indicated by a solid "★"), and

• Removing the item’s default branch from this list (indicated by an outlined "☆").

Clicking on an item in the Pipelines list will display that item’s Activity View.

137

#navigation-bar
#pipelines-list
#favorites-list
#favorites-list
../getting-started#navigation-bar
#pipelines-list
../creating-pipelines
#pipeline-health
../activity

Favorites list
The Favorites list appears above the Dashboard’s default [pipelines-list] when at least one
Pipeline/item is present in your user’s Favorites list.

This list provides key information and actions for a core subset of your user’s accessible items in
the [pipelines-list]. This key information includes the current run status for an item and its
repository’s branch, as well as other details about the item’s run, including the name of the branch,
the initial part of the commit hash and the time of the last run. Items in this list also include
clickable icons to run or re-run the item on the repository branch indicated.

You should only add an item (or one of the repository’s specific branches) to your Favorites list if
you need to examine that item’s branch on a regular basis. Adding an item’s specific branch to your
Favorites list can be done through the item’s Activity View.

Blue Ocean automatically adds branches or PRs to this list when a they contain a run that has
changes authored by the current user.

You can also manually remove items from your Favorites list by clicking on the solid "★" in this list.
When the last item is removed from this list, the list is removed from the interface.

Clicking on an item in the Favorites list will open the Pipeline run details for latest run on the
repository branch or PR indicated.

Health icons

Blue Ocean represents the overall health of a Pipeline/item or one of its repository’s branches using
weather icons, which change depending on the number of recent builds that have passed.

Health icons on the Dashboard represent overall Pipeline health, whereas the health icons in the
Branches tab of the Activity View represent the overall health for each branch.

Table 2. Health icons (best to worst)

Icon Health

Sunny, more than 80% of Runs passing

Partially Sunny, 61% to 80% of Runs passing

138

#run-status
../activity
../pipeline-run-details
../activity#branches

Icon Health

Cloudy, 41% to 60% of Runs passing

Raining, 21% to 40% of Runs passing

Storm, less than 21% of Runs passing

Run status

Blue Ocean represents the run status of a Pipeline/item or one of its repository’s branches using a
consistent set of icons throughout.

Table 3. Run status icons

Icon Status

In Progress

Passed

Unstable

Failed

Aborted

139

Activity View
The Blue Ocean Activity View shows the all activity related to one Pipeline.

Navigation Bar
The Activity View includes the standard navigation bar at the top, with a local navigation bar below
that. The local navigation bar includes:

• Pipeline Name - Clicking on this displays the default activity tab

• Favorites Toggle - Clicking the "Favorite" symbol (a star outline "☆") adds a branch to the
favorites list shown on the Dashboard’s "Favorites" list for this user.

• Tabs (Activity, Branches, Pull Requests) - Clicking one of these will display that tab of the
Activity View.

Activity
The default tab of the Activity View, the "Activity" tab, shows a list of the latest completed or in-
progress Runs. Each line in the list shows the status of the Run, id number, commit information,
duration, and when the run completed. Clicking on a Run will bring up the Pipeline Run Details for
that Run. "In Progress" Runs can be aborted from this list by clicking on the "Stop" symbol (a square
"◼" inside a circle). Runs that have completed can be re-run by clicking the "Re-run" symbol (a
counter-clockwise arrow "↺"). The list can be filtered by branch or pull request by clicking on the
"branch" drop-down in the list header.

This list does not allow runs to be edited or marked as favorites. Those actions can be done from
the "branches" tab.

Branches
The "Branches" tab shows a list of all branches that have a completed or in-progress Run in the
current Pipeline. Each line in the list corresponds to a branch in source control, [23:
en.wikipedia.org/wiki/Source_control_management] showing overall health of the branch based on

140

getting-started.pdf#navigation-bar
dashboard.pdf#favorites
dashboard.pdf#run-status
pipeline-run-details.pdf
https://en.wikipedia.org/wiki/Source_control_management
dashboard.pdf#pipeline-health

recent runs, status of the most recent run, id number, commit information, duration, and when the
run completed.

Clicking on a branch in this list will bring up the Pipeline Run Details for the latest completed or in-
progress Run of that branch. "In Progress" runs can be aborted from this list by clicking on the
"Stop" symbol (a square "◼" inside a circle). Pull requests whose latest run has completed can be
run again by clicking the "Play" symbol (a triangle "▶" inside a circle). Clicking the "Edit" symbol
(similar to a pencil "✎") opens the pipeline editor on the Pipeline for that brach. Clicking the
"Favorite" symbol (a star outline "☆") adds a branch to the favorites list shown on the Dashboard’s
"Favorites" list for this user. A favorite branch will show a solid star "★" and clicking it removes
this branch from the favorites.

Pull Requests
The "Pull Requests" tab shows a list of all Pull Requests for the current Pipeline that have a
completed or in-progress Run. (Some source control systems call these "Merge Requests", others do
not support them at all.) Each line in the list corresponds to a pull request in source control,
showing the status of the most recent run, id number, commit information, duration, and when the
run completed.

141

pipeline-run-details.pdf
pipeline-editor.pdf
dashboard.pdf#favorites
dashboard.pdf#favorites

Blue Ocean displays pull requests separately from branches, but otherwise the Pull Requests list
behaves similar to the Branches list. Clicking on a pull request in this list will bring up the Pipeline
Run Details for the latest completed or in-progress Run of that pull request. "In Progress" runs can
be aborted from this list by clicking on the "Stop" symbol (a square "◼" inside a circle). Pull
requests whose latest run has completed can be run again by clicking the "Play" symbol (a triangle
"▶" inside a circle). Pull request do not display "Heath Icons" and cannot be edited or marked as
favorites.

NOTE

By default, when a Pull Request is closed, Jenkins will remove the Pipeline from
Jenkins (to be cleaned up at a later date), and runs for that Pull Request will not
longer be accessible from Jenkins. That can be changed by changing the
configuration of the underlying Multi-branch Pipeline job.

142

pipeline-run-details.pdf
pipeline-run-details.pdf
dashboard.pdf#pipeline-health

Pipeline Run Details View
The Blue Ocean Pipeline Run Details view shows the information related to a single Pipeline Run
and allows users to edit or replay that run. Below is a detailed overview of the parts of the Run
Details view.

1. Run Status - This icon, along with the background color of the top menu bar, indicates the
status of this Pipeline run.

2. Pipeline Name - The name of this run’s Pipeline.

3. Run Number - The id number for this Pipeline run. Id numbers unique for each Branch (and
Pull Request) of a Pipeline.

4. Tab Selector - View one of the detail tabs for this run. The default is "Pipeline".

5. Re-run Pipeline - Execute this run’s Pipeline again.

6. Edit Pipeline - Open this run’s Pipeline in the Pipeline Editor.

7. Go to Classic - Switch to the "Classic" UI view of the details for this run.

8. Close Details - This closes the Details view and returns the user to the <<activity, Activity view>
for this Pipeline.

9. Branch or Pull Request - the branch or pull request for this run.

10. Commit Id - Commit id for this run.

11. Duration - The duration of this run.

12. Completed Time - How long ago the this run completed.

13. Change Author - Names of the authors with changes in this run.

14. Tab View - Shows the information for the selected tab.

Pipeline Run Status
Blue Ocean makes it easy to see the status of the current Pipeline Run by changing the color of the
top menu bar to match the status: blue for "In progress", green for "Passed", yellow for "Unstable",

143

pipeline-editor.pdf

red for "Failed", and gray for "Aborted".

Special cases
Blue Ocean is optimized for working with Pipelines in Source Control, but it can display details for
other kinds of projects as well. Blue Ocean offers the same tabs for all supported projects types, but
those tabs may display different information.

Pipelines outside of Souce Control

For Pipelines that are not based on Source Control, Blue Ocean still shows the "Commit Id",
"Branch", and "Changes", but those fields are left blank. In this case, the top menu bar does not
include the "Edit" option.

Freestyle Projects

For Freestyle projects, Blue Ocean still offers the same tabs, but the Pipeline tab only shows the
console log output. The "Rerun" or "Edit" options are also not shown in the top menu bar.

Matrix projects

Matrix projects are not supported in Blue Ocean. Viewing a Matrix project will redirect to the
"Classic UI" view for that project.

Tabs
Each of the tabs of the Run Detail view provides information on a specific aspect of a run.

Pipeline

This is the default tab and gives an overall view of the flow of this Pipeline Run. It shows each stage
and parallel branch, the steps in those stages, and the console output from those steps. The
overview image above shows a successful Pipeline run. If a particular step during the run fails, this
tab will automatically default to showing the console log from the failed step. The image below
shows a failed Run.

144

Changes

Tests

The "Tests" tab shows information about test results for this run. This tab will only contain
information if a test result publishing step, such as the "Publish JUnit test results" (junit) step. If no
results are recorded this table will say that, If all tests pass, this tab will report the total number of
passing tests. In the case of failures, the tab will display logs details from the failures as shown
below.

145

When the previous Run had failures and the current run fixes those failures, this tab will note the
fixed texts and display their logs as well.

Artifacts

The "Artifacts" tabs show a list of any artifacts saved using the "Archive Artifacts" (archive) step.
Clicking on a item in the list will download it. The full output log from the Run can be downloaded
from this list.

146

147

Pipeline Editor
The Blue Ocean Pipeline Editor is the simplest way for anyone to get started with creating Pipelines
in Jenkins. It’s also a great way for existing Jenkins users to start adopting Pipeline.

The editor allows users to create and edit Declarative Pipelines, add stages and parallelized tasks
that can run at the same time, depending on their needs. When finished, the editor saves the
Pipeline to a source code repository as a Jenkinsfile. If the Pipeline needs to be changed again, Blue
Ocean makes it easy to jump back in into the visual editor to modify the Pipeline at any time.

Starting the editor
To use the editor a user must first have created a pipeline in Blue Ocean or have one or more
existing Pipelines already created in Jenkins. If editing an existing pipeline, the credentials for that
pipeline must allow pushing of changes to the target repository.

The editor can be launched via:

• Dashboard "New Pipeline" button

• Activity View for Single Run

• Pipeline Run Details

Limitations
• SCM-based Declarative Pipelines only

• Credentials must have write permission

• Does not have full parity with Declarative Pipeline

148

• Pipeline re-ordered and comments removed

Navigation bar
The Pipeline Editor includes the standard navigation bar at the top, with a local navigation bar
below that. The local navigation bar includes:

• Pipeline Name - This will include the branch depending or how

• Cancel - Discard changes made to the pipeline.

• Save - Open the Save Pipeline Dialog.

Pipeline settings
By default, the right side of editor shows the "Pipeline Settings". This sheet can be accessed by
clicking anywhere in the Stage editor that is not a Stage or one of the "Add Stage" buttons.

Agent

The "Agent" section controls what agent the Pipeline will use. This is the same as the "agent"
directive.

Environment

The "Environment" sections lets us set environment variables for the Pipeline. This is the same as
the "environment" directive.

Stage editor
The left side editor screen contains the Stage editor, used for creating the stages of a Pipeline.

Stages can be added to the Pipeline by clicking the "+" button to the right of an existing stage.
Parallel stages can be added by clicking the "\+" button below an existing Stage. Stages can be
deleted using the context menu in the stage configuration sheet.

The Stage editor will display the name of each Stage once it has been set. Stages that contain
incomplete or invalid information will display a warning symbol. Pipelines can have validation
errors while they are being edited, but cannot be saved until the errors are fixed.

149

getting-started.pdf#navigation-bar
../pipeline/syntax.pdf#agent
../pipeline/syntax.pdf#agent
../pipeline/syntax.pdf#environment

Stage configuration
Selecting a stage in the Stage editor will open the "Stage Configuration" sheet on the right side. Here
we can can change the name of the Stage, delete the Stage, and add steps to the Stage.

The name of the Stage can be set at the top of the Stage Configuration sheet. The context menu
(three dots on the upper right), can be used to delete the current stage. Clicking "Add step" will
display the list of available Steps types with a search bar at the top. Steps can be deleted using the
context context menu in the step configuration sheet. Adding a step or selecting an existing step will
open the step configuration sheet.

150

Step configuration
Selecting a step from the Stage configuration sheet will open the Step Configuration sheet.

This sheet will differ depending on the step type, containing whatever fields or controls are needed.
The name of the Step cannot be changed. The context menu (three dots on the upper right), can be
used to delete the current step. Fields that contain incomplete or invalid information will display a
warning symbol. Pipelines can have validation errors while they are being edited, but cannot be
saved until the errors are fixed.

Save Pipeline dialog
In order to be run, changes to a Pipeline must be saved in source control The "Save Pipeline" dialog
controls saving of changes to source control.

151

A helpful description of the changes can be added or left blank. The dialog also supports saving
changes the same branch or entering a new branch to save to. Clicking on "Save & run" will save
any changes to the Pipeline as a new commit, will start a new Pipeline Run based on those changes,
and will navigate to the Activity View for this pipeline.

152

activity.pdf

Managing Jenkins
This chapter cover how to manage and configure Jenkins masters and nodes.

This chapter is intended for Jenkins administrators. More experienced users may find this
information useful, but only to the extent that they will understand what is and is not possible for
administrators to do. Individual sections may assume knowledge of information from previous
sections, but such assumptions will be explicitly called out and cross-referenced.

If you are a system administrator and want learn how to back-up, restore, maintain as Jenkins
servers and nodes, see Jenkins System Administration.

For an overview of content in the Jenkins User Handbook, see User Handbook overview.

153

system-administration.pdf
getting-started.pdf

Configuring the System

154

Managing Security
Jenkins is used everywhere from workstations on corporate intranets, to high-powered servers
connected to the public internet. To safely support this wide spread of security and threat profiles,
Jenkins offers many configuration options for enabling, editing, or disabling various security
features.

As of Jenkins 2.0, many of the security options were enabled by default to ensure that Jenkins
environments remained secure unless an administrator explicitly disabled certain protections.

This section will introduce the various security options available to a Jenkins administrator,
explaining the protections offered, and trade-offs to disabling some of them.

Enabling Security
When the Enable Security checkbox is checked, which has been the default since Jenkins 2.0, users
can log in with a username and password in order to perform operations not available to
anonymous users. Which operations require users to log in depends on the chosen authorization
strategy and its configuration; by default anonymous users have no permissions, and logged in
users have full control. This checkbox should always be enabled for any non-local (test) Jenkins
environment.

The Enable Security section of the web UI allows a Jenkins administrator to enable, configure, or
disable key security features which apply to the entire Jenkins environment.

155

JNLP TCP Port

Jenkins uses a TCP port to communicate with agents launched via the JNLP protocol, such as
Windows-based agents. As of Jenkins 2.0, by default this port is disabled.

For administrators wishing to use JNLP-based agents, the two port options are:

1. Random: The JNLP port is chosen random to avoid collisions on the Jenkins master. The
downside to randomized JNLP ports is that they’re chosen during the boot of the Jenkins master,
making it difficult to manage firewall rules allowing JNLP traffic.

2. Fixed: The JNLP port is chosen by the Jenkins administrator and is consistent across reboots of
the Jenkins master. This makes it easier to manage firewall rules allowing JNLP-based agents to
connect to the master.

Access Control

Access Control is the primary mechanism for securing a Jenkins environment against unauthorized
usage. Two facets of configuration are necessary for configuring Access Control in Jenkins:

1. A Security Realm which informs the Jenkins environment how and where to pull user (or
identity) information from. Also commonly known as "authentication."

2. Authorization configuration which informs the Jenkins environment as to which users and/or
groups can access which aspects of Jenkins, and to what extent.

156

../glossary.pdf#master

Using both the Security Realm and Authorization configurations it is possible to configure very
relaxed or very rigid authentication and authorization schemes in Jenkins.

Additionally, some plugins such as the plugin:role-strategy[Role-based Authorization Strategy]
plugin can extend the Access Control capabilities of Jenkins to support even more nuanced
authentication and authorization schemes.

Security Realm

By default Jenkins includes support for a few different Security Realms:

Delegate to servlet container

For delegating authentication a servlet container running the Jenkins master, such as Jetty. If
using this option, please consult the servlet container’s authentication documentation.

Jenkins’ own user database

Use Jenkins’s own built-in user data store for authentication instead of delegating to an external
system. This is enabled by default with new Jenkins 2.0 or later installations and is suitable for
smaller environments.

LDAP

Delegate all authentication to a configured LDAP server, including both users and groups. This
option is more common for larger installations in organizations which already have configured
an external identity provider such as LDAP. This also supports Active Directory installations.

NOTE
This feature is provided by the plugin:ldap[LDAP plugin] that may not be installed
on your instance.

Unix user/group database

Delegates the authentication to the underlying Unix OS-level user database on the Jenkins
master. This mode will also allow re-use of Unix groups for authorization. For example, Jenkins
can be configured such that "Everyone in the developers group has administrator access." To
support this feature, Jenkins relies on PAM which may need to be configured external to the
Jenkins environment.

CAUTION
Unix allows an user and a group to have the same name. In order to
disambiguate, use the @ prefix to force the name to be interpreted as a group.
For example, @dev would mean the dev group and not the dev user.

Plugins can provide additional security realms which may be useful for incorporating Jenkins into
existing identity systems, such as:

• plugin:active-directory[Active Directory]

• plugin:github-oauth[GitHub Authentication]

• plugin:crowd2[Atlassian Crowd 2]

157

http://www.eclipse.org/jetty/
http://en.wikipedia.org/wiki/Pluggable_Authentication_Modules

Authorization

The Security Realm, or authentication, indicates who can access the Jenkins environment. The other
piece of the puzzle is Authorization, which indicates what they can access in the Jenkins
environment. By default Jenkins supports a few different Authorization options:

Anyone can do anything

Everyone gets full control of Jenkins, including anonymous users who haven’t logged in. Do not
use this setting for anything other than local test Jenkins masters.

Legacy mode

Behaves exactly the same as Jenkins <1.164. Namely, if a user has the "admin" role, they will be
granted full control over the system, and otherwise (including anonymous users) will only have
the read access. Do not use this setting for anything other than local test Jenkins masters.

Logged in users can do anything

In this mode, every logged-in user gets full control of Jenkins. Depending on an advanced option,
anonymous users get read access to Jenkins, or no access at all. This mode is useful to force users
to log in before taking actions, so that there is an audit trail of users' actions.

Matrix-based security

This authorization scheme allows for granular control over which users and groups are able to
perform which actions in the Jenkins environment (see the screenshot below).

Project-based Matrix Authorization Strategy

This authorization scheme is an extension to Matrix-based security which allows additional
access control lists (ACLs) to be defined for each project separately in the Project configuration
screen. This allows granting specific users or groups access only to specified projects, instead of
all projects in the Jenkins environment. The ACLs defined with Project-based Matrix
Authorization are additive such that access grants defined in the Configure Global Security
screen will be combined with project-specific ACLs.

NOTE
Matrix-based security and Project-based Matrix Authorization Strategy are
provided by the plugin:matrix-auth[Matrix Authorization Strategy Plugin] and may
not be installed on your Jenkins.

For most Jenkins environments, Matrix-based security provides the most security and flexibility so
it is recommended as a starting point for "production" environments.

158

Figure 1. Matrix-based security

The table shown above can get quite wide as each column represents a permission provided by
Jenkins core or a plugin. Hovering the mouse over a permission will display more information
about the permission.

Each row in the table represents a user or group (also known as a "role"). This includes special
entries named "anonymous" and "authenticated." The "anonymous" entry represents permissions
granted to all unauthenticated users accessing the Jenkins environment. Whereas "authenticated'
can be used to grant permissions to all authenticated users accessing the environment.

The permissions granted in the matrix are additive. For example, if a user "kohsuke" is in the
groups "developers" and "administrators", then the permissions granted to "kohsuke" will be a
union of all those permissions granted to "kohsuke", "developers", "administrators",
"authenticated", and "anonymous."

Markup Formatter

Jenkins allows user-input in a number of different configuration fields and text areas which can
lead to users inadvertently, or maliciously, inserting unsafe HTML and/or JavaScript.

By default the Markup Formatter configuration is set to Plain Text which will escape unsafe
characters such as < and & to their respective character entities.

Using the Safe HTML Markup Formatter allows for users and administrators to inject useful and
information HTML snippets into Project Descriptions and elsewhere.

Cross Site Request Forgery
A cross site request forgery (or CSRF/XSRF) [24: www.owasp.org/index.php/Cross-
Site_Request_Forgery] is an exploit that enables an unauthorized third party to perform requests
against a web application by impersonating another, authenticated, user. In the context of a Jenkins
environment, a CSRF attack could allow an malicious actor to delete projects, alter builds, or modify

159

https://www.owasp.org/index.php/Cross-Site_Request_Forgery
https://www.owasp.org/index.php/Cross-Site_Request_Forgery

Jenkins' system configuration. To guard against this class of vulnerabilities, CSRF protection has
been enabled by default with all Jenkins versions since 2.0.

When the option is enabled, Jenkins will check for a CSRF token, or "crumb", on any request that
may change data in the Jenkins environment. This includes any form submission and calls to the
remote API, including those using "Basic" authentication.

It is strongly recommended that this option be left enabled, including on instances operating on
private, fully trusted networks.

Caveats

CSRF protection may result in challenges for more advanced usages of Jenkins, such as:

• Some Jenkins features, like the remote API, are more difficult to use when this option is
enabled. Consult the Remote API documentation for more information.

• Accessing Jenkins through a poorly-configured reverse proxy may result in the CSRF HTTP
header being stripped from requests, resulting in protected actions failing.

• Out-dated plugins, not tested with CSRF protection enabled, may not properly function.

More information about CSRF exploits can be found on the OWASP website.

Agent/Master Access Control
Conceptually, the Jenkins master and agents can be thought of as a cohesive system which happens
to execute across multiple discrete processes and machines. This allows an agent to ask the master
process for information available to it, for example, the contents of files, etc.

For larger or mature Jenkins environments where a Jenkins administrator might enable agents
provided by other teams or organizations, a flat agent/master trust model is insufficient.

The Agent/Master Access Control system was introduced [25: Starting with 1.587, and 1.580.1,
releases] to allow Jenkins administrators to add more granular access control definitions between
the Jenkins master and the connected agents.

As of Jenkins 2.0, this subsystem has been turned on by default.

160

../using/remote-api.pdf#csrf
http://www.owasp.org/index.php/Cross-Site_Request_Forgery

Customizing Access

For advanced users who may wish to allow certain access patterns from the agents to the Jenkins
master, Jenkins allows administrators to create specific exemptions from the built-in access control
rules.

By following the link highlighted above, an administrator may edit Commands and File Access
Agent/Master access control rules.

Commands

"Commands" in Jenkins and its plugins are identified by their fully-qualified class names. The
majority of these commands are intended to be executed on agents by a request of a master, but
some of them are intended to be executed on a master by a request of an agent.

Plugins not yet updated for this subsystem may not classify which category each command falls
into, such that when an agent requests that the master execute a command which is not explicitly
allowed, Jenkins will err on the side of caution and refuse to execute the command.

In such cases, Jenkins administrators may "whitelist" [26: en.wikipedia.org/wiki/Whitelist] certain
commands as acceptable for execution on the master.

Advanced

Administrators may also whitelist classes by creating files with the .conf extension in the directory
JENKINS_HOME/secrets/whitelisted-callables.d/. The contents of these .conf files should list
command names on separate lines.

The contents of all the .conf files in the directory will be read by Jenkins and combined to create a
default.conf file in the directory which lists all known safe command. The default.conf file will be

161

https://en.wikipedia.org/wiki/Whitelist

re-written each time Jenkins boots.

Jenkins also manages a file named gui.conf, in the whitelisted-callables.d directory, where
commands added via the web UI are written. In order to disable the ability of administrators to
change whitelisted commands from the web UI, place an empty gui.conf file in the directory and
change its permissions such that is not writeable by the operating system user Jenkins run as.

File Access Rules

The File Access Rules are used to validate file access requests made from agents to the master. Each
File Access Rule is a triplet which must contain each of the following elements:

1. allow / deny: if the following two parameters match the current request being considered, an
allow entry would allow the request to be carried out and a deny entry would deny the request
to be rejected, regardless of what later rules might say.

2. operation: Type of the operation requested. The following 6 values exist. The operations can also
be combined by comma-separating the values. The value of all indicates all the listed
operations are allowed or denied.

◦ read: read file content or list directory entries

◦ write: write file content

◦ mkdirs: create a new directory

◦ create: create a file in an existing directory

◦ delete: delete a file or directory

◦ stat: read metadata of a file/directory, such as timestamp, length, file access modes.

3. file path: regular expression that specifies file paths that matches this rule. In addition to the
base regexp syntax, it supports the following tokens:

◦ <JENKINS_HOME> can be used as a prefix to match the master’s JENKINS_HOME directory.

◦ <BUILDDIR> can be used as a prefix to match the build record directory, such as
/var/lib/jenkins/job/foo/builds/2014-10-17_12-34-56.

◦ <BUILDID> matches the timestamp-formatted build IDs, like 2014-10-17_12-34-56.

The rules are ordered, and applied in that order. The earliest match wins. For example, the
following rules allow access to all files in JENKINS_HOME except the secrets folders:

To avoid hassle of escaping every '\' on Windows, you can use / even on Windows.
deny all <JENKINS_HOME>/secrets/.*
allow all <JENKINS_HOME>/.*

Ordering is very important! The following rules are incorrectly written because the 2nd rule will
never match, and allow all agents to access all files and folders under JENKINS_HOME:

allow all <JENKINS_HOME>/.*
deny all <JENKINS_HOME>/secrets/.*

162

Advanced

Administrators may also add File Access Rules by creating files with the .conf. extension in the
directory JENKINS_HOME/secrets/filepath-filters.d/. Jenkins itself generates the 30-default.conf file
on boot in this directory which contains defaults considered the best balance between compatibility
and security by the Jenkins project. In order to disable these built-in defaults, replace 30-
default.conf with an empty file which is not writable by the operating system user Jenkins run as.

On each boot, Jenkins will read all .conf files in the filepath-filters.d directory in alphabetical
order, therefore it is good practice to name files in a manner which indicates their load order.

Jenkins also manages 50-gui.conf, in the filepath-filters/ directory, where File Access Rules added
via the web UI are written. In order to disable the ability of administrators to change the File Access
Rules from the web UI, place an empty 50-gui.conf file in the directory and change its permissions
such that is not writeable by the operating system user Jenkins run as.

Disabling

While it is not recommended, if all agents in a Jenkins environment can be considered "trusted" to
the same degree that the master is trusted, the Agent/Master Access Control feature may be
disabled.

Additionally, all the users in the Jenkins environment should have the same level of access to all
configured projects.

An administrator can disable Agent/Master Access Control in the web UI by un-checking the box on
the Configure Global Security page. Alternatively an administrator may create a file in
JENKINS_HOME/secrets named slave-to-master-security-kill-switch with the contents of true and
restart Jenkins.

CAUTION
Most Jenkins environments grow over time requiring their trust models to
evolve as the environment grows. Please consider scheduling regular "check-
ups" to review whether any disabled security settings should be re-enabled.

163

Managing Tools

Built-in tool providers

Ant

Ant build step

Git

JDK

Maven

164

Managing Plugins
Plugins are the primary means of enhancing the functionality of a Jenkins environment to suit
organization- or user-specific needs. There are over a thousand different plugins which can be
installed on a Jenkins master and to integrate various build tools, cloud providers, analysis tools,
and much more.

Plugins can be automatically downloaded, with their dependencies, from the Update Center. The
Update Center is a service operated by the Jenkins project which provides an inventory of open
source plugins which have been developed and maintained by various members of the Jenkins
community.

This section will cover everything from the basics of managing plugins within the Jenkins web UI,
to making changes on the master’s file system.

Installing a plugin
Jenkins provides a couple of different methods for installing plugins on the master:

1. Using the "Plugin Manager" in the web UI.

2. Using the Jenkins CLI install-plugin command.

Each approach will result in the plugin being loaded by Jenkins but may require different levels of
access and trade-offs in order to use.

The two approaches require that the Jenkins master be able to download meta-data from an Update
Center, whether the primary Update Center operated by the Jenkins project [27: updates.jenkins.io],
or a custom Update Center.

The plugins are packaged as self-contained .hpi files, which have all the necessary code, images,
and other resources which the plugin needs to operate successfully.

From the web UI

The simplest and most common way of installing plugins is through the Manage Jenkins > Manage
Plugins view, available to administrators of a Jenkins environment.

Under the Available tab, plugins available for download from the configured Update Center can be
searched and considered:

165

https://plugins.jenkins.io
../glossary.pdf#update-center
../glossary.pdf#master
https://updates.jenkins.io

Most plugins can be installed and used immediately by checking the box adjacent to the plugin and
clicking Install without restart.

CAUTION

If the list of available plugins is empty, the master might be incorrectly
configured or has not yet downloaded plugin meta-data from the Update
Center. Clicking the Check now button will force Jenkins to attempt to contact
its configured Update Center.

Using the Jenkins CLI

Administrators may also use the Jenkins CLI which provides a command to install plugins. Scripts
to manage Jenkins environments, or configuration management code, may need to install plugins
without direct user interaction in the web UI. The Jenkins CLI allows a command line user or
automation tool to download a plugin and its dependencies.

java -jar jenkins-cli.jar -s http://localhost:8080/ install-plugin SOURCE ... [-
deploy] [-name VAL] [-restart]

Installs a plugin either from a file, an URL, or from update center.

 SOURCE : If this points to a local file, that file will be installed. If
 this is an URL, Jenkins downloads the URL and installs that as a
 plugin.Otherwise the name is assumed to be the short name of the
 plugin in the existing update center (like "findbugs"),and the
 plugin will be installed from the update center.
 -deploy : Deploy plugins right away without postponing them until the reboot.
 -name VAL : If specified, the plugin will be installed as this short name
 (whereas normally the name is inferred from the source name
 automatically).
 -restart : Restart Jenkins upon successful installation.

166

cli.pdf

Advanced installation

The Update Center only allows the installation of the most recently released version of a plugin. In
cases where an older release of the plugin is desired, a Jenkins administrator can download an
older .hpi archive and manually install that on the Jenkins master.

From the web UI

Assuming a .hpi file has been downloaded, a logged-in Jenkins administrator may upload the file
from within the web UI:

1. Navigate to the Manage Jenkins > Manage Plugins page in the web UI.

2. Click on the Advanced tab.

3. Choose the .hpi file under the Upload Plugin section.

4. Upload the plugin file.

Once a plugin file has been uploaded, the Jenkins master must be manually restarted in order for

167

the changes to take effect.

On the master

Assuming a .hpi file has been explicitly downloaded by a systems administrator, the administrator
can manually place the .hpi file in a specific location on the file system.

Copy the downloaded .hpi` file into the JENKINS_HOME/plugins directory on the Jenkins master (for
example, on Debian systems JENKINS_HOME is generally /var/lib/jenkins).

The master will need to be restarted before the plugin is loaded and made available in the Jenkins
environment.

NOTE
The names of the plugin directories in the Update Site [27: updates.jenkins.io] are
not always the same as the plugin’s display name. Searching plugins.jenkins.io for
the desired plugin will provide the appropriate link to the .hpi files.

Updating a plugin
Updates are listed in the Updates tab of the Manage Plugins page and can be installed by checking
the checkboxes of the desired plugin updates and clicking the Download now and install after
restart button.

By default, the Jenkins master will check for updates from the Update Center once every 24 hours.
To manually trigger a check for updates, simply click on the Check now button in the Updates tab.

Removing a plugin
When a plugin is no longer used in a Jenkins environment, it is prudent to remove the plugin from
the Jenkins master. This provides a number of benefits such as reducing memory overhead at boot
or runtime, reducing configuration options in the web UI, and removing the potential for future
conflicts with new plugin updates.

Uninstalling a plugin

The simplest way to uninstall a plugin is to navigate to the Installed tab on the Manage Plugins
page. From there, Jenkins will automatically determine which plugins are safe to uninstall, those
which are not dependencies of other plugins, and present a button for doing so.

168

https://updates.jenkins.io
https://plugins.jenkins.io/

A plugin may also be uninstalled by removing the corresponding .hpi file from the
JENKINS_HOME/plugins directory on the master. The plugin will continue to function until the master
has been restarted.

CAUTION
If a plugin .hpi file is removed but required by other plugins, the Jenkins
master may fail to boot correctly.

Uninstalling a plugin does not remove the configuration that the plugin may have created. If there
are existing jobs/nodes/views/builds/etc configurations that reference data created by the plugin,
during boot Jenkins will warn that some configurations could not be fully loaded and ignore the
unrecognized data.

Since the configuration(s) will be preserved until they are overwritten, re-installing the plugin will
result in those configuration values reappearing.

Removing old data

Jenkins provides a facility for purging configuration left behind by uninstalled plugins. Navigate to
Manage Jenkins and then click on Manage Old Data to review and remove old data.

Disabling a plugin

Disabling a plugin is a softer way to retire a plugin. Jenkins will continue to recognize that the
plugin is installed, but it will not start the plugin, and no extensions contributed from this plugin
will be visible.

A Jenkins administrator may disable a plugin by unchecking the box on the Installed tab of the
Manage Plugins page (see below).

169

A systems administrator may also disable a plugin by creating a file on the Jenkins master, such as:
JENKINS_HOME/plugins/PLUGIN_NAME.hpi.disabled.

The configuration(s) created by the disabled plugin behave as if the plugin were uninstalled, insofar
that they result in warnings on boot but are otherwise ignored.

Using the Jenkins CLI

It is also possible to enable or disable plugins via the Jenkins CLI using the enable-plugin or
disable-plugin commands.

NOTE
The enable-plugin command was added to Jenkins in v2.136. The disable-plugin
command was added to Jenkins in v2.151.

The enable-plugin command receives a list of plugins to be enabled. Any plugins which a selected
plugin depends on will also be enabled by this command.

java -jar jenkins-cli.jar -s http://localhost:8080/ enable-plugin PLUGIN ... [-
restart]

Enables one or more installed plugins transitively.

 PLUGIN : Enables the plugins with the given short names and their
 dependencies.
 -restart : Restart Jenkins after enabling plugins.

The disable-plugin command receives a list of plugins to be disabled. The output will display
messages for both successful and failed operations. If you only want to see error messages, the
-quiet option can be specified. The -strategy option controls what action will be taken when one of
the specified plugins is listed as an optional or mandatory dependency of another enabled plugin.

170

cli.pdf
https://jenkins.io/changelog/#v2.136
https://jenkins.io/changelog/#v2.151

java -jar jenkins-cli.jar -s http://localhost:8080/ disable-plugin PLUGIN ... [-quiet
(-q)]
[-restart (-r)] [-strategy (-s) strategy]

Disable one or more installed plugins.
Disable the plugins with the given short names. You can define how to proceed with the
dependant plugins and if a restart after should be done. You can also set the quiet
mode
to avoid extra info in the console.

 PLUGIN : Plugins to be disabled.
 -quiet (-q) : Be quiet, print only the error messages
 -restart (-r) : Restart Jenkins after disabling plugins.
 -strategy (-s) strategy : How to process the dependant plugins.
 - none: if a mandatory dependant plugin exists and
 it is enabled, the plugin cannot be disabled
 (default value).
 - mandatory: all mandatory dependant plugins are
 also disabled, optional dependant plugins remain
 enabled.
 - all: all dependant plugins are also disabled, no
 matter if its dependency is optional or mandatory.

CAUTION

In the same way than enabling and disabling plugins from the UI requires a
restart to complete the process, the changes made with the CLI commands will
take effect once Jenkins is restarted. The -restart option forces a safe restart of
the instance once the command has successfully finished, so the changes will be
immediately applied.

Pinned plugins

CAUTION
Pinned plugins feature was removed in Jenkins 2.0. Versions later than Jenkins
2.0 do not bundle plugins, instead providing a wizard to install the most useful
plugins.

The notion of pinned plugins applies to plugins that are bundled with Jenkins 1.x, such as the
plugin:matrix-auth[Matrix Authorization plugin].

By default, whenever Jenkins is upgraded, its bundled plugins overwrite the versions of the plugins
that are currently installed in JENKINS_HOME.

However, when a bundled plugin has been manually updated, Jenkins will mark that plugin as
pinned to the particular version. On the file system, Jenkins creates an empty file called
JENKINS_HOME/plugins/PLUGIN_NAME.hpi.pinned to indicate the pinning.

Pinned plugins will never be overwritten by bundled plugins during Jenkins startup. (Newer
versions of Jenkins do warn you if a pinned plugin is older than what is currently bundled.)

171

It is safe to update a bundled plugin to a version offered by the Update Center. This is often
necessary to pick up the newest features and fixes. The bundled version is occasionally updated,
but not consistently.

The Plugin Manager allows plugins to be explicitly unpinned. The
JENKINS_HOME/plugins/PLUGIN_NAME.hpi.pinned file can also be manually created/deleted to control
the pinning behavior. If the pinned file is present, Jenkins will use whatever plugin version the user
has specified. If the file is absent, Jenkins will restore the plugin to the default version on startup.

172

Jenkins CLI
Jenkins has a built-in command line interface that allows users and administrators to access
Jenkins from a script or shell environment. This can be convenient for scripting of routine tasks,
bulk updates, troubleshooting, and more.

The command line interface can be accessed over SSH or with the Jenkins CLI client, a .jar file
distributed with Jenkins.

WARNING

Use of the CLI client distributed with Jenkins 2.53 and older and Jenkins LTS
2.46.1 and older is not recommended for security reasons: while there are no
currently known vulnerabilities, several have been reported and patched in
the past, and the Jenkins Remoting protocol it uses is inherently vulnerable to
remote code execution bugs, even “preauthentication” exploits (by anonymous
users able to physically access the Jenkins network).

The client distributed with Jenkins 2.54 and newer and Jenkins LTS 2.46.2 and
newer is considered secure in its default (-http) or -ssh modes, as is using the
standard ssh command.

Using the CLI over SSH
In a new Jenkins installation, the SSH service is disabled by default. Administrators may choose to
set a specific port or ask Jenkins to pick a random port in the Configure Global Security page. In
order to determine the randomly assigned SSH port, inspect the headers returned on a Jenkins URL,
for example:

% curl -Lv https://JENKINS_URL/login 2>&1 | grep 'X-SSH-Endpoint'
< X-SSH-Endpoint: localhost:53801
%

With the random SSH port (53801 in this example), and Authentication configured, any modern SSH
client may securely execute CLI commands.

Authentication

Whichever user used for authentication with the Jenkins master must have the Overall/Read
permission in order to access the CLI. The user may require additional permissions depending on
the commands executed.

Authentication relies on SSH-based public/private key authentication. In order to add an SSH public
key for the appropriate user, navigate to JENKINS_URL/user/USERNAME/configure and paste an SSH
public key into the appropriate text area.

173

security.pdf#ssh-server
https://JENKINS_URL/user/USERNAME/configure
https://JENKINS_URL/user/USERNAME/configure
https://JENKINS_URL/user/USERNAME/configure
https://JENKINS_URL/user/USERNAME/configure
https://JENKINS_URL/user/USERNAME/configure
https://JENKINS_URL/user/USERNAME/configure
https://JENKINS_URL/user/USERNAME/configure

Common Commands

Jenkins has a number of built-in CLI commands which can be found in every Jenkins environment,
such as build or list-jobs. Plugins may also provide CLI commands; in order to determine the full
list of commands available in a given Jenkins environment, execute the CLI help command:

% ssh -l kohsuke -p 53801 localhost help

The following list of commands is not comprehensive, but it is a useful starting point for Jenkins
CLI usage.

build

One of the most common and useful CLI commands is build, which allows the user to trigger any

174

job or Pipeline for which they have permission.

The most basic invocation will simply trigger the job or Pipeline and exit, but with the additional
options a user may also pass parameters, poll SCM, or even follow the console output of the
triggered build or Pipeline run.

% ssh -l kohsuke -p 53801 localhost help build

java -jar jenkins-cli.jar build JOB [-c] [-f] [-p] [-r N] [-s] [-v] [-w]
Starts a build, and optionally waits for a completion. Aside from general
scripting use, this command can be used to invoke another job from within a
build of one job. With the -s option, this command changes the exit code based
on the outcome of the build (exit code 0 indicates a success) and interrupting
the command will interrupt the job. With the -f option, this command changes
the exit code based on the outcome of the build (exit code 0 indicates a
success) however, unlike -s, interrupting the command will not interrupt the
job (exit code 125 indicates the command was interrupted). With the -c option,
a build will only run if there has been an SCM change.
 JOB : Name of the job to build
 -c : Check for SCM changes before starting the build, and if there's no
 change, exit without doing a build
 -f : Follow the build progress. Like -s only interrupts are not passed
 through to the build.
 -p : Specify the build parameters in the key=value format.
 -s : Wait until the completion/abortion of the command. Interrupts are passed
 through to the build.
 -v : Prints out the console output of the build. Use with -s
 -w : Wait until the start of the command
% ssh -l kohsuke -p 53801 localhost build build-all-software -f -v
Started build-all-software #1
Started from command line by admin
Building in workspace /tmp/jenkins/workspace/build-all-software
[build-all-software] $ /bin/sh -xe /tmp/hudson1100603797526301795.sh
+ echo hello world
hello world
Finished: SUCCESS
Completed build-all-software #1 : SUCCESS
%

console

Similarly useful is the console command, which retrieves the console output for the specified build
or Pipeline run. When no build number is provided, the console command will output the last
completed build’s console output.

175

% ssh -l kohsuke -p 53801 localhost help console

java -jar jenkins-cli.jar console JOB [BUILD] [-f] [-n N]
Produces the console output of a specific build to stdout, as if you are doing 'cat
build.log'
 JOB : Name of the job
 BUILD : Build number or permalink to point to the build. Defaults to the last
 build
 -f : If the build is in progress, stay around and append console output as
 it comes, like 'tail -f'
 -n N : Display the last N lines
% ssh -l kohsuke -p 53801 localhost console build-all-software
Started from command line by kohsuke
Building in workspace /tmp/jenkins/workspace/build-all-software
[build-all-software] $ /bin/sh -xe /tmp/hudson1100603797526301795.sh
+ echo hello world
yes
Finished: SUCCESS
%

who-am-i

The who-am-i command is helpful for listing the current user’s credentials and permissions
available to the user. This can be useful when debugging the absence of CLI commands due to the
lack of certain permissions.

% ssh -l kohsuke -p 53801 localhost help who-am-i

java -jar jenkins-cli.jar who-am-i
Reports your credential and permissions.
% ssh -l kohsuke -p 53801 localhost who-am-i
Authenticated as: kohsuke
Authorities:
 authenticated
%

Using the CLI client
While the SSH-based CLI is fast and covers most needs, there may be situations where the CLI client
distributed with Jenkins is a better fit. For example, the default transport for the CLI client is HTTP
which means no additional ports need to be opened in a firewall for its use.

Downloading the client

The CLI client can be downloaded directly from a Jenkins master at the URL /jnlpJars/jenkins-
cli.jar, in effect JENKINS_URL/jnlpJars/jenkins-cli.jar

176

https://JENKINS_URL/jnlpJars/jenkins-cli.jar
https://JENKINS_URL/jnlpJars/jenkins-cli.jar
https://JENKINS_URL/jnlpJars/jenkins-cli.jar
https://JENKINS_URL/jnlpJars/jenkins-cli.jar
https://JENKINS_URL/jnlpJars/jenkins-cli.jar

While a CLI .jar can be used against different versions of Jenkins, should any compatibility issues
arise during use, please re-download the latest .jar file from the Jenkins master.

Using the client

The general syntax for invoking the client is as follows:

java -jar jenkins-cli.jar [-s JENKINS_URL] [global options...] command [command
options...] [arguments...]

The JENKINS_URL can be specified via the environment variable $JENKINS_URL. Summaries of other
general options can be displayed by running the client with no arguments at all.

Client connection modes

There are three basic modes in which the 2.54+ / 2.46.2+ client may be used, selectable by global
option: -http; -ssh; and -remoting.

HTTP connection mode

This is the default mode as of 2.54 and 2.46.2, though you may pass the -http option explicitly for
clarity.

Authentication is preferably with an -auth option, which takes a username:apitoken argument. Get
your API token from /me/configure:

java -jar jenkins-cli.jar [-s JENKINS_URL] -auth kohsuke:abc1234ffe4a command ...

(Actual passwords are also accepted, but this is discouraged.)

You can also precede the argument with @ to load the same content from a file:

java -jar jenkins-cli.jar [-s JENKINS_URL] -auth @/home/kohsuke/.jenkins-cli command
...

WARNING
For security reasons the use of a file to load the authentication credentials is
the recommended authentication way.

An alternative authentication method is to configure environment variables in a similar way as the
$JENKINS_URL is used. The username can be specified via the environment variable $JENKINS_USER_ID
while the apitoken can be specified via the variable $JENKINS_API_TOKEN. Both variables have to be
set all at once.

177

export JENKINS_USER_ID=kohsuke
export JENKINS_API_TOKEN=abc1234ffe4a
java -jar jenkins-cli.jar [-s JENKINS_URL] command ...

In case these environment variables are configured you could still override the authentication
method using different credentials with the -auth option, which takes preference over them.

Generally no special system configuration need be done to enable HTTP-based CLI connections. If
you are running Jenkins behind an HTTP(S) reverse proxy, ensure it does not buffer request or
response bodies.

WARNING

The HTTP(S) connection mode of the CLI in Jenkins 2.54 and newer does not
work correctly behind an Apache HTTP reverse proxy server using mod_proxy.
Workarounds include using a different reverse proxy such as Nginx or
HAProxy, or using the SSH connection mode where possible. See JENKINS-
47279.

SSH connection mode

Authentication is via SSH keypair. You must select the Jenkins user ID as well:

java -jar jenkins-cli.jar [-s JENKINS_URL] -ssh -user kohsuke command ...

In this mode, the client acts essentially like a native ssh command.

By default the client will try to connect to an SSH port on the same host as is used in the
JENKINS_URL. If Jenkins is behind an HTTP reverse proxy, this will not generally work, so run Jenkins
with the system property -Dorg.jenkinsci.main.modules.sshd.SSHD.hostName=ACTUALHOST to define a
hostname or IP address for the SSH endpoint.

Remoting connection mode

This was the only mode supported by clients downloaded from a pre-2.54 / pre-2.46.2 Jenkins server
(prior to the introduction of the -remoting option). Its use is deprecated for security and
performance reasons. That said, certain commands or command modes can only run in Remoting
mode, typically because the command functionality involves running server-supplied code on the
client machine.

This mode is disabled on the server side for new installations of 2.54+ and 2.46.2. If you must use it,
and accept the risks, it may be enabled in Configure Global Security.

Authentication is preferably via SSH keypair. A login command and --username / --password
command (note: not global) options are also available; these are discouraged since they cannot
work with a non-password-based security realm, certain command arguments will not be properly
parsed if anonymous users lack overall or job read access, and saving human-chosen passwords for
use in scripts is considered insecure.

178

https://issues.jenkins-ci.org/browse/JENKINS-47279
https://issues.jenkins-ci.org/browse/JENKINS-47279

Note that there are two transports available for this mode: over HTTP, or over a dedicated TCP
socket. If the TCP port is enabled and seems to work, the client will use this transport. If the TCP
port is disabled, or such a port is advertised but does not accept connections (for example because
you are using an HTTP reverse proxy with a firewall), the client will automatically fall back to the
less efficient HTTP transport.

Common Problems with the Remoting-based client

There are a number of common problems that may be experienced when running the CLI client.

Operation timed out

Check that the HTTP or TCP port is opened if you are using a firewall on your server. You can
configure its value in Jenkins configuration. By default it is set to use a random port.

% java -jar jenkins-cli.jar -s JENKINS_URL help
Exception in thread "main" java.net.ConnectException: Operation timed out
 at java.net.PlainSocketImpl.socketConnect(Native Method)
 at java.net.PlainSocketImpl.doConnect(PlainSocketImpl.java:351)
 at java.net.PlainSocketImpl.connectToAddress(PlainSocketImpl.java:213)
 at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:200)
 at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:432)
 at java.net.Socket.connect(Socket.java:529)
 at java.net.Socket.connect(Socket.java:478)
 at java.net.Socket.<init>(Socket.java:375)
 at java.net.Socket.<init>(Socket.java:189)
 at hudson.cli.CLI.<init>(CLI.java:97)
 at hudson.cli.CLI.<init>(CLI.java:82)
 at hudson.cli.CLI._main(CLI.java:250)
 at hudson.cli.CLI.main(CLI.java:199)

No X-Jenkins-CLI2-Port

Go to Manage Jenkins > Configure Global Security and choose "Fixed" or "Random" under TCP
port for JNLP agents.

179

security.pdf#jnlp-tcp-port

java.io.IOException: No X-Jenkins-CLI2-Port among [X-Jenkins, null, Server, X-Content-
Type-Options, Connection,
 X-You-Are-In-Group, X-Hudson, X-Permission-Implied-By, Date, X-Jenkins-
Session, X-You-Are-Authenticated-As,
 X-Required-Permission, Set-Cookie, Expires, Content-Length, Content-Type]
 at hudson.cli.CLI.getCliTcpPort(CLI.java:284)
 at hudson.cli.CLI.<init>(CLI.java:128)
 at hudson.cli.CLIConnectionFactory.connect(CLIConnectionFactory.java:72)
 at hudson.cli.CLI._main(CLI.java:473)
 at hudson.cli.CLI.main(CLI.java:384)
 Suppressed: java.io.IOException: Server returned HTTP response code: 403 for URL:
http://citest.gce.px/cli
 at
sun.net.www.protocol.http.HttpURLConnection.getInputStream0(HttpURLConnection.java:184
0)
 at
sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1441
)
 at hudson.cli.FullDuplexHttpStream.<init>(FullDuplexHttpStream.java:78)
 at hudson.cli.CLI.connectViaHttp(CLI.java:152)
 at hudson.cli.CLI.<init>(CLI.java:132)
 ... 3 more

Server key did not validate

You may get the error below and find a log entry just below that concerning mismatched keys:

org.apache.sshd.common.SshException: Server key did not validate
 at
org.apache.sshd.client.session.AbstractClientSession.checkKeys(AbstractClientSession.j
ava:523)
 at
org.apache.sshd.common.session.helpers.AbstractSession.handleKexMessage(AbstractSessio
n.java:616)
 ...

This means your SSH configuration does not recognize the public key presented by the server. It’s
often the case when you run Jenkins in dev mode and multiple instances of the application are run
under the same SSH port over time.

In a development context, access your ~/.ssh/known_hosts (or in
C:/Users/<your_name>/.ssh/known_hosts for Windows) and remove the line corresponding to your
current SSH port (e.g. [localhost]:3485). In a production context, check with the Jenkins
administrator if the public key of the server changed recently. If so, ask the administrator to do the
the steps described above.

180

UsernameNotFoundException

If your client displays a stacktrace that looks like:

org.acegisecurity.userdetails.UsernameNotFoundException: <name_you_used>
 ...

This means your SSH keys were recognized and validated against the stored users but the
username is not valid for the security realm your application is using at the moment. This could
occur when you were using the Jenkins database initially, configured your users, and then switched
to another security realm (like LDAP, etc.) where the defined users do not exist yet.

To solve the problem, ensure your users exist in your configured security realm.

Troubleshooting logs

To get more information about the authentication process:

1. Go into Manage Jenkins > System Log > Add new log recorder.

2. Enter any name you want and click on Ok.

3. Click on Add

4. Type org.jenkinsci.main.modules.sshd.PublicKeyAuthenticatorImpl (or type PublicKeyAuth and
then select the full name)

5. Set the level to ALL.

6. Repeat the previous three steps for hudson.model.User

7. Click on Save

When you try to authenticate, you can then refresh the page and see what happen internally.

181

Script Console

182

Managing Nodes

183

In-process Script Approval
Jenkins, and a number of plugins, allow users to execute Groovy scripts in Jenkins. These scripting
capabilities are provided by:

• Script Console.

• Jenkins Pipeline.

• The plugin:email-ext[Extended Email plugin].

• The plugin:groovy[Groovy plugin] - when using the "Execute system Groovy script" step.

• The plugin:job-dsl[JobDSL plugin] as of version 1.60 and later.

To protect Jenkins from execution of malicious scripts, these plugins execute user-provided scripts
in a Groovy Sandbox that limits what internal APIs are accessible. Administrators can then use the
"In-process Script Approval" page, provided by the plugin:script-security[Script Security plugin], to
manage which unsafe methods, if any, should be allowed in the Jenkins environment.

Getting Started
The plugin:script-security[Script Security plugin] is installed automatically by the Post-install Setup
Wizard, although initially no additional scripts or operations are approved for use.

IMPORTANT

Older versions of this plugin may not be safe to use. Please review the
security warnings listed on plugin:script-security[the Script Security plugin
page] in order to ensure that the plugin:script-security[Script Security
plugin] is up to date.

Security for in-process scripting is provided by two different mechanisms: the Groovy Sandbox and
Script Approval. The first, the Groovy Sandbox, is enabled by default for Jenkins Pipeline allowing
user-supplied Scripted and Declarative Pipeline to execute without prior Administrator
intervention. The second, Script Approval, allows Administrators to approve or deny unsandboxed
scripts, or allow sandboxed scripts to execute additional methods.

For most instances, the combination of the Groovy Sandbox and the Script Security’s built-in list of

184

script-console.pdf
../pipeline.pdf
../../getting-started/installing#post-install-setup-wizard
../../getting-started/installing#post-install-setup-wizard
/doc/book/pipeline
https://github.com/jenkinsci/script-security-plugin/tree/master/src/main/resources/org/jenkinsci/plugins/scriptsecurity/sandbox/whitelists

approved method signatures, will be sufficient. It is strongly recommended that Administrators
only deviate from these defaults if absolutely necessary.

Groovy Sandbox
To reduce manual interventions by Administrators, most scripts will run in a Groovy Sandbox by
default, including all Jenkins Pipelines. The sandbox only allows a subset of Groovy’s methods
deemed sufficiently safe for "untrusted" access to be executed without prior approval. Scripts using
the Groovy Sandbox are all subject to the same restrictions, therefore a Pipeline authored by an
Administrator is subject to the restrictions as one authorized by a non-administrative user.

When a script attempts to use features or methods unauthorized by the sandbox, a script is halted
immediately, as shown below with Jenkins Pipeline

Figure 2. Unauthorized method signature rejected at runtime via Blue Ocean

The Pipeline above will not execute until an Administrator approves the method signature via the
In-process Script Approval page.

In addition to adding approved method signatures, users may also disable the Groovy Sandbox
entirely as shown below. Disabling the Groovy Sandbox requires that the entire script must be
reviewed and manually approved by an administrator.

185

/doc/book/pipeline

Figure 3. Disabling the Groovy Sandbox for a Pipeline

Script Approval
Manual approval of entire scripts, or method signatures, by an administrator provides
Administrators with additional flexibility to support more advanced usages of in-process scripting.
When the Groovy Sandbox is disabled, or a method outside of the built-in list is invoked, the Script
Security plugin will check the Administrator-managed list of approved scripts and methods.

For scripts which wish to execute outside of the Groovy Sandbox, the Administrator must approve
the entire script in the In-process Script Approval page:

Figure 4. Approving an unsandboxed Scripted Pipeline

For scripts which use the Groovy Sandbox, but wish to execute an currently unapproved method
signature will also be halted by Jenkins, and require an Administrator to approve the specific
method signature before the script is allowed to execute:

186

Figure 5. Approving a new method signature

Approve assuming permissions check

Script approval provides three options: Approve, Deny, and "Approve assuming permissions check."
While the purpose of the first two are self-evident, the third requires some additional
understanding of what internal data scripts are able to access and how permissions checks inside
of Jenkins function.

Consider a script which accesses the method hudson.model.AbstractItem.getParent(), which by itself
is harmless and will return an object containing either the folder or root item which contains the
currently executing Pipeline or Job. Following that method invocation, executing
hudson.model.ItemGroup.getItems(), which will list items in the folder or root item, requires the
Job/Read permission.

This could mean that approving the hudson.model.ItemGroup.getItems() method signature would
allow a script to bypass built-in permissions checks.

Instead, it is usually more desirable to click Approve assuming permissions check which will
cause the Script Approval engine to allow the method signature assuming the user running the
script has the permissions to execute the method, such as the Job/Read permission in this example.

187

Managing Users

188

System Administration
This chapter for system administrators of Jenkins servers and nodes. It will cover system
maintenance topics including security, monitoring, and backup/restore.

Users not involved with system-level tasks will find this chapter of limited use. Individual sections
may assume knowledge of information from previous sections, but such assumptions will be
explicitly called out and cross-referenced.

If you are a Jenkins administrator and want to know more about managing Jenkins nodes and
instances, see Managing Jenkins.

For an overview of content in the Jenkins User Handbook, see User Handbook overview.

189

managing.pdf
getting-started.pdf

Backing-up/Restoring Jenkins

190

Monitoring Jenkins

191

Securing Jenkins
In the default configuration of Jenkins 1.x, Jenkins does not perform any security checks. This
means the ability of Jenkins to launch processes and access local files are available to anyone who
can access Jenkins web UI and some more.

Securing Jenkins has two aspects to it.

• Access control, which ensures users are authenticated when accessing Jenkins and their
activities are authorized.

• Protecting Jenkins against external threats

Access Control
You should lock down the access to Jenkins UI so that users are authenticated and appropriate set
of permissions are given to them. This setting is controlled mainly by two axes:

• Security Realm, which determines users and their passwords, as well as what groups the users
belong to.

• Authorization Strategy, which determines who has access to what.

These two axes are orthogonal, and need to be individually configured. For example, you might
choose to use external LDAP or Active Directory as the security realm, and you might choose
"everyone full access once logged in" mode for authorization strategy. Or you might choose to let
Jenkins run its own user database, and perform access control based on the permission/user
matrix.

• Quick and Simple Security --- if you are running Jenkins like java -jar jenkins.war and only
need a very simple setup

• Standard Security Setup --- discusses the most common setup of letting Jenkins run its own user
database and do finer-grained access control

• Apache frontend for security --- run Jenkins behind Apache and perform access control in
Apache instead of Jenkins

• Authenticating scripted clients --- if you need to programmatically access security-enabled
Jenkins web UI, use BASIC auth

• Matrix-based security|Matrix-based security --- Granting and denying finer-grained permissions

Protect users of Jenkins from other threats
There are additional security subsystems in Jenkins that protect Jenkins and users of Jenkins from
indirect attacks.

The following topics discuss features that are off by default. We recommend you read them first
and act on them immediately.

• CSRF Protection --- prevent a remote attack against Jenkins running inside your firewall. This

192

https://wiki.jenkins-ci.org/display/JENKINS/Quick+and+Simple+Security
https://wiki.jenkins-ci.org/display/JENKINS/Standard+Security+Setup
https://wiki.jenkins-ci.org/display/JENKINS/Apache+frontend+for+security
https://wiki.jenkins-ci.org/display/JENKINS/Authenticating+scripted+clients
https://wiki.jenkins-ci.org/display/JENKINS/Matrix-based+security
https://wiki.jenkins-ci.org/display/JENKINS/CSRF+Protection

feature is off by default in Jenkins 1.x and when upgrading to 2.x.

• Security implication of building on master --- protect Jenkins master from malicious builds

• Slave To Master Access Control --- protect Jenkins master from malicious build agents

• Securing JENKINS_HOME --- protect Jenkins from users with local access

The following topics discuss other security features that are on by default. You’ll only need to look
at them when they are causing problems.

• Configuring Content Security Policy --- protect users of Jenkins from malicious builds

• Markup formatting --- protect users of Jenkins from malicious users of Jenkins

Disabling Security
One may accidentally set up a security realm / authorization in such a way that you may no longer
be able to reconfigure Jenkins.

When this happens, you can fix this by the following steps:

1. Stop Jenkins (the easiest way to do this is to stop the servlet container.)

2. Go to $JENKINS_HOME in the file system and find config.xml file.

3. Open this file in the editor.

4. Look for the <useSecurity>true</useSecurity> element in this file.

5. Replace true with false

6. Remove the elements authorizationStrategy and securityRealm

7. Start Jenkins

8. When Jenkins comes back, it will be in an unsecured mode where everyone gets full access to
the system.

If this is still not working, trying renaming or deleting config.xml.

193

https://wiki.jenkins-ci.org/display/JENKINS/Security+implication+of+building+on+master
https://wiki.jenkins-ci.org/display/JENKINS/Slave+To+Master+Access+Control
https://wiki.jenkins.io/display/JENKINS/Securing+JENKINS_HOME
https://wiki.jenkins-ci.org/display/JENKINS/Configuring+Content+Security+Policy
https://wiki.jenkins-ci.org/display/JENKINS/Markup+formatting

Managing Jenkins with Chef

194

Managing Jenkins with Puppet

195

Scaling Jenkins
This chapter will cover topics related to using and managing large scale Jenkins configurations:
large numbers of users, nodes, agents, folders, projects, concurrent jobs, job results and logs, and
even large numbers of masters.

The audience for this chapter is expert Jenkins users, administrators, and those planning large-
scale installations.

If you are a Jenkins administrator and want to know more about managing Jenkins nodes and
instances, see Managing Jenkins.

For an overview of content in the Jenkins User Handbook, see User Handbook overview.

196

managing.pdf
getting-started.pdf

Appendix A: Appendix
These sections are generally intended for Jenkins administrators and system administrators. Each
section covers a different topic independent of the other sections. They are advanced topics,
reference material, and topics that do not fit into other chapters.

WARNING

To Contributors: Please consider adding material elsewhere before adding it
here. In fact, topics that do not fit elsewhere may even be out of scope for this
handbook. See Contributing to Jenkins for details of how to contact project
contributors and discuss what you want to add.

197

/participate

Glossary

General Terms
Agent

An agent is typically a machine, or container, which connects to a Jenkins master and executes
tasks when directed by the master.

Artifact

An immutable file generated during a Build or Pipeline run which is archived onto the Jenkins
Master for later retrieval by users.

Build

Result of a single execution of a Project

Cloud

A System Configuration which provides dynamic Agent provisioning and allocation, such as that
provided by the plugin:azure-vm-agents[Azure VM Agents] or plugin:ec2[Amazon EC2] plugins.

Core

The primary Jenkins application (jenkins.war) which provides the basic web UI, configuration,
and foundation upon which Plugins can be built.

Downstream

A configured Pipeline or Project which is triggered as part of the execution of a separate Pipeline
or Project.

Executor

A slot for execution of work defined by a Pipeline or Project on a Node. A Node may have zero or
more Executors configured which corresponds to how many concurrent Projects or Pipelines
are able to execute on that Node.

Fingerprint

A hash considered globally unique to track the usage of an Artifact or other entity across
multiple Pipelines or Projects.

Folder

An organizational container for Pipelines and/or Projects, similar to folders on a file system.

Item

An entity in the web UI corresponding to either a: Folder, Pipeline, or Project.

Job

A deprecated term, synonymous with Project.

Label

User-defined text for grouping Agents, typically by similar functionality or capability. For

198

example linux for Linux-based agents or docker for Docker-capable agents.

Master

The central, coordinating process which stores configuration, loads plugins, and renders the
various user interfaces for Jenkins.

Node

A machine which is part of the Jenkins environment and capable of executing Pipelines or
Projects. Both the Master and Agents are considered to be Nodes.

Project

A user-configured description of work which Jenkins should perform, such as building a piece of
software, etc.

Pipeline

A user-defined model of a continuous delivery pipeline, for more read the Pipeline chapter in
this handbook.

Plugin

An extension to Jenkins functionality provided separately from Jenkins Core.

Publisher

Part of a Build after the completion of all configured Steps which publishes reports, sends
notifications, etc.

Stage

stage is part of Pipeline, and used for defining a conceptually distinct subset of the entire
Pipeline, for example: "Build", "Test", and "Deploy", which is used by many plugins to visualize or
present Jenkins Pipeline status/progress.

Step

A single task; fundamentally steps tell Jenkins what to do inside of a Pipeline or Project.

Trigger

A criteria for triggering a new Pipeline run or Build.

Update Center

Hosted inventory of plugins and plugin metadata to enable plugin installation from within
Jenkins.

Upstream

A configured Pipeline or Project which triggers a separate Pipeline or Project as part of its
execution.

Workspace

A disposable directory on the file system of a Node where work can be done by a Pipeline or
Project. Workspaces are typically left in place after a Build or Pipeline run completes unless
specific Workspace cleanup policies have been put in place on the Jenkins Master.

199

pipeline.pdf

	Jenkins User Handbook
	Table of Contents
	User Handbook overview
	Installing Jenkins
	Prerequisites
	Installation platforms
	Post-installation setup wizard

	Using Jenkins
	Using credentials
	Credential security
	Configuring credentials

	Pipeline
	What is Jenkins Pipeline?
	Why Pipeline?
	Pipeline concepts
	Pipeline syntax overview
	Pipeline example

	Getting started with Pipeline
	Prerequisites
	Defining a Pipeline
	Built-in Documentation
	Further Reading

	Using a Jenkinsfile
	Creating a Jenkinsfile
	Working with your Jenkinsfile
	Running a Pipeline
	Restarting or Rerunning a Pipeline

	Branches and Pull Requests
	Creating a Multibranch Pipeline
	Using Organization Folders

	Using Docker with Pipeline
	Customizing the execution environment
	Advanced Usage with Scripted Pipeline

	Extending with Shared Libraries
	Defining Shared Libraries
	Using libraries
	Writing libraries

	Pipeline Development Tools
	Blue Ocean Editor
	Command-line Pipeline Linter
	"Replay" Pipeline Runs with Modifications
	IDE Integrations
	Pipeline Unit Testing Framework

	Pipeline Syntax
	Declarative Pipeline
	Scripted Pipeline
	Syntax Comparison

	Using Speed/Durability Settings To Reduce Disk I/O Needs
	How Do I Set Speed/Durability Settings?
	Will Higher-Performance Durability Settings Help Me?
	What Am I Giving Up With This Durability Setting "Trade-Off?"
	Requirements To Use Durability Settings
	What Are The Durability Settings?
	Suggested Best Practices And Tips for Durability Settings
	Other Scaling Suggestions

	Blue Ocean
	What is Blue Ocean?
	Frequently asked questions
	Join the community

	Getting started with Blue Ocean
	Installing Blue Ocean
	Accessing Blue Ocean
	Navigation bar
	Switching to the classic UI

	Creating a Pipeline
	Setting up your Pipeline project

	Dashboard
	Navigation bar
	Pipelines list
	Favorites list

	Activity View
	Navigation Bar
	Activity
	Branches
	Pull Requests

	Pipeline Run Details View
	Pipeline Run Status
	Special cases
	Tabs

	Pipeline Editor
	Starting the editor
	Limitations
	Navigation bar
	Pipeline settings
	Stage editor
	Stage configuration
	Step configuration
	Save Pipeline dialog

	Managing Jenkins
	Configuring the System
	Managing Security
	Enabling Security
	Cross Site Request Forgery
	Agent/Master Access Control

	Managing Tools
	Built-in tool providers

	Managing Plugins
	Installing a plugin
	Updating a plugin
	Removing a plugin
	Pinned plugins

	Jenkins CLI
	Using the CLI over SSH
	Using the CLI client

	Script Console
	Managing Nodes
	In-process Script Approval
	Getting Started
	Groovy Sandbox
	Script Approval

	Managing Users
	System Administration
	Backing-up/Restoring Jenkins
	Monitoring Jenkins
	Securing Jenkins
	Access Control
	Protect users of Jenkins from other threats
	Disabling Security

	Managing Jenkins with Chef
	Managing Jenkins with Puppet
	Scaling Jenkins
	Appendix A: Appendix
	Glossary
	General Terms

